Rabu, 22 Juni 2011

FAKTOR LINGKUNGAN YANG MEMPENGARUHI MIKROBA


OLEH: DR.H.M.AGUS KRISNO BUDIYANTO,M.KES

DOSEN PENDIDIKAN BIOLOGI UMM

Tiap-tiap makhluk hidup itu keselamatannya sangat tergantung kepada keadaan sekitarnya, terlebih-lebih mikro organisme. Makhlukmakhluk halus ini tidak dapat menguasai faktor-faktor luar sepenuhnya, sehingga hidupnya sama sekali tergantung kepada keadaan sekelilingnya. Satu-satunya jalan untuk menyelamatkan diri ialah dengan menyesuaikan diri (adaptasi) kepada pengaruh faktor-faktor luar. Penyesuaian diri dapat terjadi secara cepat serta bersifat sementara waktu, akan tetapi dapat pula perubahan itu bersifat permanen sehingga mempengaruhi bentuk morfologi serta sifat-sifat fisiologi yang turun menurun. Kehidupan bakteri tidak hanya di pengaruhi oleh faktor-faktor lingkungan akan tetapi juga mempengaruhi keadaan lingkungan. Misal, bakteri termogenesis menimbulkan panas di dalam media tempat ia tumbuh. Bakteri dapat pula mengubah pH dari medium tempat ia hidup, perubahan ini di sebut perubahan secara kimia.
Adapun faktor-faktor lingkungan dapat di bagi atas faktor-faktor biotik dan faktor-faktor abiotik. Faktor-faktor biotik terdiri atas mahluk-mahluk hidup, sedang faktor-faktor abiotik terdiri dari faktor-faktor alam (fisika) dan faktorfaktor kimia.
5.1 Faktor-Faktor Abiotik.
Faktor abiotik adalah faktor yang dapat mempengaruhi kehidupan yang bersifat fisika dan kimia. Di antara faktor-faktor yang perlu di perhatikan ialah suhu, pH, tekanan osmose, pengeringan, sinar gelombang pendek, tegangan muka dan daya oligodinamik.
1. Suhu
Masing-masing mikrobia memerlukan suhu tertentu untuk hidupnya. Suhu pertumbuhan suatu mikrobia dapat di bedakan dalam suhu minimum, optimum dan maksimum. Berdasarkan atas perbedaan suhu pertumbuhannya dapat di bedakan mikrobia yang psikhrofil, mesofil, dan termofil. Untuk tujuan tertentu suatu mikrobia perlu di tentukan titik kematian termal (thermal death point) dan waktu kematian termal (thermal death time)- nya.
Daya tahan terhadap suhu itu tidak sama bagi tiap-tiap spesies. Ada spesies yang mati setelah mengalami pemanasan beberapa menit di dalam cairan medium pada suhu 60°C, sebaliknya ,bakteri yang membentuk spora seperti genus Bacillus dan Clostridium itu tetap hidup setelah di panasi dengan uap 100°C atau lebih selama kira-kira setengah jam. Untuk sterilisali, maka syaratnya untuk membunuh setiap spesies untuk membunuh setiap spesies bakteri ialah pemanasan selama 15 menit dengan tekanan 15 pound serta suhu 121°C di dalam autoklaf.
Dalam cara menentukan daya tahan panas suatu spesies perlu di perhatikan syarat-syarat sebagai berikut:
1. Berapa tinggi suhu.
2. Berapa lama spesies itu berada di dalam suhu tersebut.
3. Apakah pemanasan bakteri itu di lakukan di dalam keadaan kering ataukah di dalam keadaan basah.
4. Beberapa pH dari medium tempat bakteri itu di panasi.
5. Sifat-sifat lain dari medium tempat bakteri itu di panasi.
Mengenai pengaruh basah dan kering ini dapat diterangkan sebagai berikut. Di dalam keadaan basah, maka protein dari bakteri lebih cepat menggumpal daripada di dalam keadaan kering, pada temperartur yang sama. Berdasarkan ini, maka sterilisasi barang-barang gelas di dalam oven kering itu memerlukan suhu yang lebih tinggi daripada 121° C dan waktu yang lebih lama daripada 15 menit. Sedikit perubahan pH menju ke asam atau ke basa itu sangat berpengaruh kepada pemanasan. Berhubung dengan ini, maka buah-buahan yang masam itu lebih mudah disterilisasikan daripada sayur-sayur atau daging.
Untuk menentukan suhu maut bagi bakteri orang mengambil pedoman sebagai berikut: Suhu maut (Thermal Death Point) ialah suhu yang serendahrendahnya yang dapat membunuh bakteri yang berada di dalam standard medium selama 10 menit. Ketentuan ini mencakup kelima syarat-syarat tersebut diatas. Perlu diperhatikan kiranya, bahwa tidak semua individu dari suatu spesies itu mati bersama-sama pada suatu suhu tertentu. Biasanya, individu yang satu lebih tahan daripada individu yang lain terhadap suatupemanasan, sehingga tepat jugalah bila kita katakana adanya angka kematian pada suatu suhu (Thermal Death Rate). Sebaliknya jika suatu standard suhu sudah ditentukan seperti pada perusahaan pengawetan makanan atau dalam perusahaan susu, maka lamanya pemanasan merupakan faktor yang berbeda-beda bagi tiap-tiap   dapatlah kita adakan penentuan waktu maut (Thermal Death Rate). Biasanya standard suhu itu diatas titik didih dan pemanasan setinggi ini perlu bagi pemusnahan bakteri yang berspora. Umumnya bakteri lebih tahan suhu rendah daripada suhu tinggi. Hanya beberapa spesies neiseria mati karena pendinginan sampai 0° C dalam kedaan basah. Bakteri patogen yang bias hidup di dalam tubuh hewan atau manusia dapat bertahan sampai beberapa bulan pada suhu titik beku.
Pembekuan itu sebenarnya tidak berpengaruh kepada spora, karena spora sangat sedikit mengandung air. Pembekuan bakteri di dalam air lebih cepat membunuh bakteri daripada kalau pembekuan itu di dalam buih, buih tidak membeku sekeras air beku. Bahwa pembekuan air itu menyebabkan kerusakan mekanik pada bakteri mudahlah dimaklumi, tentang efek yang lain misalnya secara kimia, kita belum tahu. Pembekuan secara perlahan-lahan dalam suhu -16°C ( es campur garam ) lebih efektif dari pada pembekuan secara mendadak dalam udara beku (-190° C ). Juga pembekuan secara terputus-putus ternyata lebih efektif dari pada pembekuan secara terusmenerus. Sebagai contoh, piaraan basil tipus mati setelah dibekukan putus – putus dalam waktu 2 jam, sedang piaraan itu dapat bertahan beberapa minggu dalam keadaan beku terus-menerus.
Mengenai pengaruh suhu terhadap kegiatan fisiologi, maka seperti halnya dengan mahluk-mahluk lain, mikrooganisme pun dapat bertahan di dalam suatu batas-batas suhu tertentu. Batas-batas itu ialah suhu minimum dan suhu maksimum, sedang suhu yang paling baik bagi kegiatan hidup itu disebut suhu optimum. Berdasarkan itu adalah tiga golongan bakteri, yaitu:
Bakteri termofil (politermik), yaitu bakteri yang tumbuh dengan baik sekali pada suhu setinggi 55° sampai 65°C, meskipun bakteri ini juga dapat berbiak pada suhu lebih rendah atau lebih tinggi daripada itu, yaitu dengan batas-batas 40°C sampai 80°C. Golongan ini terutama terdapat didalam sumber air panas dan tempat-tempat lain yang bersuhu lebih tinggi dari 55°C.

Bakteri mesofil (mesotermik), yaitu bakteri yang hidup baik di antara 5° dan 60°C, sedang suhu optimumnya ialah antara 25° sampai 40°C, minimum 15°C dan maksimum di sekitar 55°C. Umumnya hidup di dalam alat pencernaan, kadang-kadang ada juga yang dapat hidup dengan baik pada suhu 40°C atau lebih.
Bakteri psikrofil (oligotermik), yaitu bakteri yang dapat hidup di antara 0° sampai 30°C, sedang suhu optimumnya antara 10° sampai 20°C. Kebanyakan dari golongan ini tumbuh di tempat-tempat dingin baik di daratan ataupun di lautan.
Pada tahun 1967 di Yellowstone Park di temukan bakteri yang hidup dalam air yang panasnya 93 – 94 °C dan pada tahun 1969 berapa spesies lagi di tempat yang sama yang juga sangat termofil. Spesies-spesies itu di tabiskan menjadi Thermus aquaticus, Bacillus caldolyticus, dan Bacillus caldotenax. Dalam praktek, batas-batas antara golongan-golongan itu sukar di tentukan, juga di antara beberapa individu di dalam satu golongan pun batas-batas suhu optimum itu sangat berbeda-beda. Bakteri termofil agak
menyulitkan pekerjaan pasteurisasi, karena pemanasan pada pasteurisasi itu hanya sekitar 70 ° C saja, sedang pada suhu setinggi itu spora-spora tidak mati. Spora bakteri termofil juga merepotkan perusahaan pengawetan makanan. Selama bahan makanan di dalam kaleng itu di simpan pada suhu yang rendah, spora-spora tidak akan tumbuh menjadi bakteri. Akan tetapi, jika suhu sampai naik sedikit, besarlah bahaya akan rusaknya makanan itu sebagai akibat dari pertumbuhan spora-spora tersebut.
Sebaliknya, bakteri psikrofil dapat mengganggu makanan yang di simpan terlalu lama di dalam lemari es. Golongan bakteri yang dapat hidup pada bata-batas suhu yang sempit, misalnya, Conococcus itu hanya dapat hidup subur antara 30 ° dan 40 ° C, jadi batas antara minimum dan maksimum tidak terlampau besar, maka bakteri semacam itu kita sebut stenotermik. Sebaliknya Escherichia coli tumbuh baik antara 8 °C sampai 46 °C, jadi beda antara minimum dan maksimum suhu di sini ada lebih besar daripada yang di sebut di atas, maka Escherichia coli itu termasuk golongan bakteri yang kita sebut euritermik. Pada umumnya dapat di pastikan, bahwa suhu optimum itu lebih mendekati suhu maksimum daripada suhu minimum.Hal ini nyata benar bagi Gonococcus dan Escherichia coli, keduanya mempunyai optimum suhu 37 °C. Bakteri yang dipiara di bawah
suhu minimum atau sedikit di atas suhu maksimum itu tidak segera mati, melainkan berada di dalam keadaan “tidur” (dormancy).
Suhu berpengaruh terhadap kinerja reaksi dalam mikroorganisme. Kecepatan reaksi kimia merupakan fungsi langsung daripada suhu dan mengikuti hubungan yang dikemukakan semula oleh Arrhenius :
Log10 V =    − ΔH*    + C
2.303RT

v ialah kecepatan reaksi, ΔH* ialah energi aktivitas pada reaksi, R ialah konstante gas, T ialah suhu dalam derajat Kelvin. Karena itu, kecepatan reaksi kimia sebagai fungsi T ¯¹ menghasilkan garis lurus dengan lereng negatif (Gambar 10.6). Gambar 10.7 menunjukkan kecepatan tumbuh E. coli yang dapat disamakan dengan fungsi T ¯¹. Kurvenya linear hanya pada bagian kisaran suhu untuk tumbuh. Sebab kecepatan tumbuh dengan tibatiba sangat menurun pada batas atas dan bawah kisaran suhu. Kecepatan tumbuh pada suhu tinggi yang menurun tiba-tiba disebabkan oleh denaturasi panas protein dan mungkin pula denaturasi struktur sel seperti membran. Pada suhu maksimum untuk tumbuh maka reaksi yang merusak menjadi sangat besar. Suhu itu biasanya hanya berapa derajat lebih tinggi daripada suhu untuk kecepatan tumbuh maksimal, yang dinamakan suhu optimum.

Gambar 5.3 Hubungan antara kecepatan reaksi kimiawi dan suhu menurut rumus arrthenius
Dari pengaruh suhu pada kecepatan reaksi kimia, dapat diramalkan bahwa semua bakteri dapat melanjutkan tumbuhnya (meskipun dengan kecepatan yang makin lama makin lebih rendah) selama suhu diturunkan sampai sistem itu membeku. Akan tetapi, kebanyakan bakteri berhenti tumbuh pada suhu (suhu minimum untuk tumbuh ) jauh di atas titik beku air. Setiap mikroorganisme mempunyai suhu yang tepat untuk pertumbuhan, tetapi di bawah suhu ini pertumbuhan tidak terjadi betapa pun lamanya masa
inkubasi.
Nilai suhu kardinal menurut angka (minimum, optimum, dan maksimum) dan kisaran suhu yang memungkinkan pertumbuhan, sangat beragam pada bakteri. Beberapa bakteri yang diisolasi dari sumber air panas dapat tumbuh pada suhu setinggi 95°C; yang diisolasi dari lingkungan dingin, dapat tumbuh sampai suhu serendah –10°C jika konsentrasi solut yang tinggi mencegah mediumnya menjadi beku. Berdasarkan kisaran suhu untuk tumbuh, bakteri seringkali dibagi atas tiga golongan besar: termofil, yang tumbuh pada suhu tinggi (diatas 55°C); mesofil, yang tumbuh baik antara 20°C sampai 45°C dan psikrofil, yang tumbuh baik pada 0°C.
Seperti juga dalam sistem klasifikasi biologis yang kerap kali benar, terminologi ini menunjukan perbedaan yang lebih jelas di antara tipe-tipe daripada yang di jumpai di alam. Klasifikasi reaksi suhu tiga pihak tidak memperhitungkan seluruh variasi di antara bakteri berkenaan dengan adanya perluasan kisaran suhu yang memungkinkan pertumbuhan. Perbedaan dalam kisaran suhu di antara termofil kadang-kadang dinyatakan dengan istilah stenotermofil (organisme yang tidak dapat tumbuh di bawah 37 °C),
dan euritermofil (organisme yang dapat tumbuh di bawah 37 °C). psikrofil yang masih dapat tumbuh di atas 20 °C di sebut psikrofil fakultatif; dan yang tidak dapat tumbuh di atas 20 °C di sebut psikrofil obligat.
Garis dengan satu tanda panah menunjukkan batas suhu tumbuh untuk paling sedikit satu galur spesies itu terdapat variasi di antara bermacam galur beberapa spesies. Tanda dengan dua panah menunjukkan bahwa pada batas suhu sebenarnya terletak di antara tanda panah tersebut. Garis dengan titik-titik menunjukkan bahwa pertumbuhan minimum belum ditentukan. Data yang menggambarkan kisaran suhu tumbuh berbagai macam bakteri menunjukkan sifat termofil, mesofil, dan psikrofil yang agak berubah-ubah.
Kisaran suhu yang memungkinkan pertumbuhan itu berubah-ubah seperti halnya suhu-suhu maksimum dan minimum. Kisaran suhu beberapa bakteri kurang dari 10°C, sedangkan untuk lainnya dapat sampai 50°C.
Faktor yang menentukan batas suhu untuk tumbuh telah disingkapkan oleh dua macam penelitian; perbandingan antara sifat organisme dengan kisaran suhu yang sangat berbeda; dan analisis sifat mutan yang peka terhadap suhu, kisaran suhunya menjadi lebih sempit oleh perubahan satu mutan. Ada dua macam mutan yang peka terhadap suhu; mutan peka panas, dengan suhu tumbuh maksimum yang menurun ; dan mutan peka dingin, dengan suhu tumbuh minimum yang menaik.
Studi mengenai kinetika denaturasi panas pada enzim dan struktur sel yang berprotein (misalnya flagelum, ribosom) menunjukkan bahwa banyak protein khusus pada bakteri termofil lebih tahan panas daripada protein homolognya dari bakteri mesofil. Mungkin pula untuk mengira-ngirakan ketahanan panas menyeluruh protein sel yang dapat larut, dengan mengukur kecepatan protein di dalam ekstrak bakteri menjadi tidak larut karena denaturasi panas pada beberapa suhu yang berbeda. Percobaan seperti ini (Tabel 10.6). Dengan jelas menunjukkan bahwa pada hakekatnya semua protein bakteri termofilik setelah perlakuan panas tetap pada tingkat asalnya yang sebenarnya menghilangkan semua protein mesofil yang sekelompok. Karena itu adaptasi mikroorganisme termofilik terhadap suhu di sekitarnya hanya dapat dicapai dengan perubahan mutasional yang mempengaruhi struktur utama kebanyakan (jika tidak semua) protein sel tersebut. Meskipun adaptasi evalusionar yang menghasilkan termofil agaknya melibatkan ,mutasi yang meningkatkan ketahanan panas proteinnya , namun kebanyakan mutasi yang berpengaruh pada struktur utama suatu protein khusus ( misalnya enzin) mengurangi ketahanan panas protein tersebut, walaupun banyak di antara mutasi ini mungkin berpengaruh sedikit atau tidak sama sekali pada sifat-sifat katalitik. Akibatnya, dengan tidak adanya seleksi tandingan oleh tantangan panas, maka suhu maksimum untuk pertumbuhan mikroorganisme apa pun harus menurun secara berangsur-angsur sebagai akibat mutasi acak yang berpengaruh pada struktur pertama proteinnya. Kesimpulan ini ditunjang oleh pengamatan bahwa bakteri psikrofilik yangdiisolasi dari air antartik mengandung sejumlah besar protein yang luar biasa labilnya terhadap panas.
Pada suhu rendah, semua protein mengalami sedikit perubahan bentuk, yang dianggap berasal dari melemahnya ikatan hidrofobik yang memegang peran penting dalam penentuan struktur tartier (berdimensi tiga). Semua tipe ikatan lain pada protein menjadi lebih kuat bila suhu diturunkan. Pentingnya bentuk yang tepat untuk fungsi sebenarnya protein alosterik dan untuk perakitan sendiri protein ribosomal menjadi kedua kelas protein ini teramat peka terhadap inaktivasi dingin. Oleh karen aitu, tidaklah mengherankan bahwa mutasi yang menaikkan suhu minimum untuk pertumbuhan biasanya terjadi di dalam gen yang menyandikan protein-protein ini.
Susunan lipid pada hampir semua organisme, baik prokariota maupun eukariota, berubah-ubah menurut suhu tumbuh. Bila suhu turun, kandungan relatif asam lemak tidak jenuh didalam lipid selular meningkat. Ilustrasi kejadian ini pada E. coli tampak pada perubahan dalam susunan lemak ini adalah komponen penting daripada adaptasi suhu pada bakteri. Titik cair lipid berhubungan langsung dengan asam lemak jenuh. Akibatnya, derajat kejenuhan asam lemak pada lipid membran menentukan derajat keadaan cairnya pada suhu tertentu. Karena fungsi membran bergantung pada keadaan cair komponen lipid, dapatlah dipahami bahwa pertumbuhan pada suhu rendah haruslah diikuti dengan penambahan derajat ketidakjenuhan asam lemak.
2. pH
Mikrobia dapat tumbuh baik pada daerah pH tertentu, misalnya untuk bakteri pada pH 6,5 – 7,5; khamir pada pH 4,0 – 4,5 sedangkan jamur dan aktinomisetes pada daerah pH yang luas. Setiap mikrobia mempunyai pH minimum, optimum dan maksimum untuk pertumbuhanya. Berdasarkan atas perbedaan daerah pH untuk pertumbuhanya dapat dibedakan mikrobia yang asidofil, mesofil ( neutrofil ) dan alkalofil. Untuk menahan perubahan dalam medium sering ditambahkan larutan bufer. pH optimum pertumbuhan bagi kebanyakan bakteri antara 6,5 dan 7,5. Namun beberapa spesies dapat tumbuh dalam keaadaan sangat masam atau sangat alkalin, bila bakteri di kuitivasi di dalam suatu medium yang mula-mula disesuaikan pHnya misal 7 maka mungkin pH ini akan berubah sebagai akibat adanya senyawasenyawa asam atau basa yang dihasilkan selama pertumbuhannya. Pergesaran pH ini dapat sedemikian besar sehingga mengahambat pertumbuhan seterusnya organisme itu. Pergeseran pH dapat dapat dicegah dengan menggunakan larutan penyangga dalam medium, larutan penyangga adalah senyawa atau pasangan senyawa yang dapat menahan perubahan pH.
Istilah pH pada suatu symbol untuk derajat keasaman atau alkanitas suatu larutan; pH=log (1/[H+]) dengan [H+] sebagai konsentrasi ion hydrogen. pH air suling ialah 7,0 (netral); cuka 2,25; sari tomat, 4,2; susu, 6,6; natrium bikarbonat (0,1N), 8,4; susu magnesia, 10,5.

Tabel 5.7 Indikator Asam – Basa

NAMA             INTERVAL pH     PK INDIKATOR     WARNA
ASAM – BASA
Biru timol        8,0 – 9,6        1,7            Merah – kuning
Biru brom fenol    3,0 – 4,6        4,1            Kuning – biru
Merah metal        4,4 – 6,2        5,0            Merah – kuning
Biru brom timo    l    6,0 – 7,6        7,1            Kuning – biru
Merah feno        6,8 – 8,4        7,8            Kuning – merah
Merah kresol        7,0 – 8,8        8,2            Kuning – merah
Fenolftalein        8,2 – 9,8        9,6        Tak berwarna -merah muda

Tabel 5.8 pH minimum, optimum, dan maksimum untuk pertumbuhan beberapa spesies bakteri

Bakteri             KISARAN pH UNTUK PERTUMBUHAN
Batas bawah     Optimum     Batas atas
Thiobacillus            0,5        2,0-3,5        6,0
Thiooxidans            4,0-4,5        5,4-6,3        7,0-8,0
Acetobacter aceti        4,2        7,0-7,5        9,3
Staphylococcus aureus    5,5        7,0-7,5        8,5
Azotobacter spp        6,0        6,8        7,0
Clhorobium limicola        6,0        7,5 – 7,8    9,5
Thermos aquaticus
Atas dasar daerah-daerah pH bagi kehidupan mikroorganisme dibedakan menjadi 3 golongan besar yaitu:
Mikroorganisme yang asidofilik, yaitu jasad yang dapat tumbuh pada pH antara 2,0-5,0
Mikroorganisme yang mesofilik (neutrofilik), yaitu jasad yang dapat tumbuh pada pH antara 5,5-8,0
Mikroorganisme yang alkalifilik, yaitu jasad yang dapat tumbuh pada pH antara 8,4-9,5
Suhu, lingkungan, gas dan pH adalah faktor-faktor fisik utama yang harus dipertimbangkan di dalam penyediaan kondisi optimum bagi pertumbuhan kebanyakan spesies bakteri. Beberapa kelompok bakteri mempunyai persyaratan tambahan. Sebagai contoh, organisme fotoautotrofik (fotosintetik) harus diberi sumber pencahayaan, karena cahaya adalah sumber energinya. Pertumbuhan bakteri dapat dipengaruhi oleh keadaan tekanan osmotik (tenaga atau tegangan yang terhimpun ketika air berdifusi melalui suatu membran) atau tekanan hidrostatik (tegangan zat alir). Bakteri tertentu, yang disebut bakteri halofilik dan dijumpai di air asin, wadah berisi garam, makanan yang diasin, air laut, dan danau air asin, hanya tumbuh bila mediumnya mengandung konsentrasi garam yang tinggi. Air laut mengandung 3,5 persen natrium klorida; di danau air asin, konsentrasi natrium kloridanya dapat mencapai 25 persen. Mikroorganisme yang membutuhkan NaCl untuk pertumbuhannya di sebut halofil obligat – mereka tidak akan tumbuh kecuali bila konsentrasi garamnya tinggi, yang dapat tumbuh dalam larutan natrium kloride tetapi tidak mensyaratkannya disebut halofil fakultatif – mereka tumbuh dalam lingkungan berkonsentrasi garam tinggi atau rendah. Ini menunjukkan adanya tanggapan terhadap tekanan osmotik. Telah diisolasi bakteri dari parit-parit terdalam dilautan yang tekanan hidrostatiknya mencapai ukuran ton meter persegi.

Tabel 5.9 Kondisi-kondisi fisik yang mempengaruhi pertumbuhan bakteri

Kondisi Fisik                 Tipe Bakteri             Kondisi Biakan
(Kelompok Psikologis)        (Inkubasi
Suhu (kisaran            Psikrofil                0 – 30°c
pertumbuhan) :        Mesofil                    25 – 40°c
minimum dan            Termofil :
maksimum;            Termofil                25 – 55°c
optimumnya pada        Fakultatif (bebas pilih)
suatu titik didalam        Termofil obligat            45 – 75°c
kisaran bergantung ada
spesies            Aerob                    Hanya tumbuh bila
ada oksigen bebas
Anaerob                Hanya tumbuh
Persyaratan akan gas                            tanpa oksigen
Anaerob fakultatif            bebas
Tumbuh baik tanpa
Mikroaerofil                oksigen bebas
Tumbuh bila ada
oksigen bebas
dalam jumlah
sedikit
Kebanyakan bakteri
berkaitan dengan
kehidupan hewan dan            pH optimum 6,5 –
Keasaman atau         tumbuhan                7,5
alkanitas (pH)            Beberapa spesies eksotik
pH minimum 0,5;
Fotosintetik (autotrof dan         pH maksimum 9,5

heterotrof)
Cahaya                                sumber cahaya
Halofil (halofil obligat)
Salinitasi                    konsentrasi garam
yang tinggi, 10 –15% NaCl

3. Kelembaban
Mikroorganisme mempunyai nilai kelembaban optimum. Pada umumnya untuk pertumbuhan ragi dan bakteri diperlukan kelembaban yang tinggi diatas 85°C, sedangkan untuk jamur dan aktinomises diperlukan kelembaban yang rendah dibawah 80°C. Kadar air bebas didalam lautan (aw) merupakan nilai perbandingan antara tekanan uap air larutan dengan tekanan uap air murni, atau 1/100 dari kelembaban relatif. Nilai aw untuk bakteri pada umumnya terletak diantara 0,90 – 0,999 sedangkan untuk bakteri halofilik mendekati 0,75. Banyak mikroorganisme yang tahan hidup didalam keadaan kering untuk waktu yang lama seperti dalam bentuk spora, konidia, arthrospora, klamidospora dan kista. Seperti halnya dalam pembekuan, proses pengeringan protoplasma, menyebabkan kegiatan metaobolisme terhenti. Pengeringan secara perlahan-lahan menyebabkan perusakan sel akibat pengaruh tekanan osmosa dan pengaruh lainnya dengan naiknya kadar zat terlarut.
4. Tekanan osmosis
Pada umumnya mikrobia terhambat pertumbuhannya di dalam larutan yang hipertonis. Karena sel-sel mikrobia dapat mengalami plasmolisa. Didalam larutan yang hipotonis sel mengalami plasmoptisa yang dapat di ikuti pecahnya sel. Beberapa mikrobia dapat menyesuaikan diri terhadap tekanan osmose yang tinggi; tergantung pada larutanya dapat dibedakan jasad osmofil dan halofil atau halodurik. Medium yang paling cocok bagi kehidupan bakteri ialah medium yang isotonik terhadap isi sel bakteri. Jika bakteri di tempatkan di dalam suatu larutan yang hipertonik terhadap isi sel, maka bakteri akan mengalami plasmolisis. Larutan garam atau larutan gula yang agak pekat mudah benar menyebabkan terjadinya plasmolisis ini. Sebaliknya, bakteri yang ditempatkan di dalam air suling akan kemasukan air sehingga dapat menyebabkan pecahnya bakteri, dengan kata lain, bakteri dapat mengalami plasmoptisis. Berdasarkan inilah maka pembuatan suspense bakteri dengan menggunakan air murni itu tidak kena, yang digunakan seharusnyalah medium cair.
Jika perubahan nilai osmosis larutan medium tidak terjadi sekonyongkonyong, akan tetapi perlahan-lahan sebagai akibat dari penguapan air, maka bakteri dapat menyesuaikan diri, sehingga tidak terjadi plasmolisis secara mendadak.
6. Senyawa toksik
Ion-ion logam berat seperti Hg, Ag, Cu, Au, Zn, Li, dan Pb. Walaupun pada kadar sangat rendah akan bersifat toksis terhadap mikroorganisme karena ion-ion logam berat dapat bereaksi dengan gugusan senyawa sel. Daya bunuh logam berat pada kadar rendah disebut daya ologodinamik. Anion seperti sulfat tartratklorida, nitrat dan benzoat mempengaruhi kegiatan fisiologi mikroorganisme. Karena adanya perbedaan sifat fisiologi yang besar pada masing-masing mikroorganisme maka sifat meracun dari anion tadi juga berbeda-beda. Sifat meracun alakali juga berbeda-beda, tergantung pada jenis logamnya. Ada beberapa senyawa asam organik seperti asam benzoat, asetat dan sorbet dapat digunakan sebagai zat pengawet didalam industry bahan makanan. Sifat meracun ini bukan disebabkan karena nilai pH, tetapi merupakan akibat langsung dari molekul asam organik tersebut terhadap gugusan didalam sel.
7. Tegangan Muka
Tegangan muka mempengaruhi cairan sehingga permukaannya akan menyerupai membran yang elastis, sehingga dapat mempengaruhi kehidupan mikroorganisme. Protoplasma mikroorganisme terdapat didalam sel yang dilindungi dinding sel. Dengan adanya perubahan bahan pada tegangan muka dinding sel, akan mempengaruhi permukaan protoplasma, yang akibatnya dapat mempengaruhi pertumbuhan dan perubahan bentuk morfologinya. Bakteri yang hidup didalam alat pencernaan dapat berkembangbiak didalam medium yang mempunyai tegangan permukaan relatif rendah. Tetapi kebanyakan lebih menyukai tegangan permukaan yang relatif tinggi.
8. Tekanan Hodrostatik dan Mekanik
Beberapa jenis mikroorganisme dapat hidup didalam samudra pasifik dengan tekanan lebih dari 1208 kg tiap cm persegi, dan kelompok ini disebut barofilik. Selain itu tekanan yang tinggi akan menyebabkan meningkatnya beberapa reaksi kimia, sedang tekanan diatas 7500 kg tiap cm persegi dapat menyebabkan denaturasi protein. Perubahan-perubahan ini mempengaruhi proses biologi sel jasad hidup.
9. Kebasahan dan kekeringan
Bakteri sebenarnya mahluk yang suka akan keadaan basah, bahkan dapat hidup di dalam air. Hanya di dalam air yang tertutup mereka tak dapat hidup subur; hal ini di sebabkan karena kurangnya udara bagi mereka. Tanah yang cukup basah baiklah bagi kehidupan bakteri. Banyak bakteri menemui ajalnya, jika kena udara kering. Meningococcus, yaitu bakteri yang menyebabkan meningitis, itu mati dalam waktu kurang daripada satu jam, jika digesekkan di atas kaca obyek. Sebaliknya,spora-spora bakteri dapat bertahan beberapa tahun dalam keadaan kering.
Pada proses pengeringan, air akan menguap dari protoplasma. Sehingga kegiatan metabolisme berhenti. Pengeringan dapat juga merusak protoplasma dan mematikan sel. Tetapi ada mikrobia yang dapat tahan dalam keadaan kering, misalnya mikrobia yang membentuk spora dan dalam bentuk kista. Adapun syarat-syarat yang menentukan matinya bakteri karena kekeringan itu ialah:
Bakteri yang ada dalam medium susu, gula, daging kering dapat bertahan lebih lama daripada di dalam gesekan pada kaca obyek. Demikian pula efek kekeringan kurang terasa, apabila bakteri berada di dalam sputum ataupun di dalam agar-agar yang kering.
Pengeringan di dalam terang itu pengaruhnya lebih buruk daripada pengeringan di dalam gelap.
Pengeringan pada suhu tubuh (37°C) atau suhu kamar (+ 26 °C) lebih buruk daripada pengeringan pada suhu titik-beku.
Pengeringan di dalam udara efeknya lebih buruk daripada pengeringan di dalam vakum ataupun di dalam tempat yang berisi nitrogen. Oksidasi agaknya merupakan faktor-maut.
10. Sinar gelombang pendek
Sinar-sinar yang mempunyai panjang gelombang pendek (misalnya sinar, sinar Ultra violet, sinar gama), mempunyai daya penetrasi yang cukup besar terhadap mikribia. Sinar-sinar tersebut dapat menyebabkan kematian. Perubahan genetik (mutasi) atau penghambatan pertumbuhan mikrobia. Sinar-sinar tersebut banyak digunakan di dalam praktek sterilisasi dan pengawetan bahan makanan. Kebanyakan bakteri tidak dapat mengadakan fotosintesis, bahkan setiap radiasi dapat berbahaya bagi kehidupannya. Sinar
yang nampak oleh mata kita, yaitu yang bergelombang antara 390 m μ sampai 760 m μ, tidak begitu berbahaya; yang berbahaya ialah sinar yang lebih pendek gelombangnya, yaitu yang bergelombang antara 240 m μ sampai 300 m μ. Lampu air rasa banyak memancarkan sinar bergelombang pendek ini. Lebih dekat, pengaruhnya lebih buruk. Dengan penyinaran pada jarak dekat sekali, bakteri bahkan dapat mati seketika, sedang pada jarak yang agak jauh mungkin sekali hanya pembiakannya sajalah yang terganggu. Spora-spora dan virus lebih dapat bertahan terhadap sinar ultra-ungu. Sinar ultra-ungu biasa dipakai untuk mensterilkan udara, air, plasma darah dan bermacam-macam bahan lainya. Suatu kesulitan ialah bahwa bakteri atau virus itu mudah sekali ketutupan benda-benda kecil, sehingga dapat terhindar dari pengaruh penyinaran. Alangkah baiknya, jika kertas-kertas pembungkus makanan, ruang-ruang penyimpan daging, ruang-ruang pertemuan, gedunggedung bioskop dan sebagainya pada waktu-waktu tertentu dibersihkan dengan penyinaran ultra-ungu. Sinar X dan sinar radium yang bergelombang lebih pendek daripada sinar ultra-ungu juga dapat membunuh mikroorganisme, akan tetapi memerlukan lebih banyak dosis daripada sinar ultra-ungu. Bakteri yang disinari dengan sinar X kerap kali mengalami mutasi. Aliran listrik tidak nampak berbahaya bagi kehidupan bakteri. Jika ada bakteri yang mati karenanya, hal ini di sebabkan oleh panas atau oleh zat-zat yang timbul di dalam medium sebagai akibat daripada arus listrik, seperti ozon dan klor (chlor).
11. Tegangan muka
Tegangan muka mempengaruhi cairan sehingga permukaan cairan itu menyerupai membran yang elastik. Demikian juga permukaan cairan yang menyelubungi sel mikrobia. Tekanan dari membran cairan ini di teruskan ke dalam protoplasma sel melalui dinding sel dan membran sitoplasma, Sehingga dapat mempengaruhi kehidupan mikrobia. Kebanyakan bakteri lebih menyukai tegangan muka yang relatif tinggi. Tetapi adapula yang hidup pada tegangan muka yang relatif rendah. Misalnya bakteri-bakteri yang hidup dalam saluran pencernaan. Sabun mengurangi ketegangan permukaan, dan oleh karena itu dapat menyebabkan hancurnya bakteri. Diplococcus pneumoniae sangat peka terhadap sabun. Empedu juga mempunyai khasiat seperti sabun; hanya bakteri yang hidup di dalam usus mempunyai daya tahan terhadap empedu. Bolehlah dikatakan pada umumnya, bahwa bakteri yang Gram negatif lebih tahan terhadap pengurangan (depresi) tegangan permukaan daripada bakteri yang Gram positif.
12. Daya oligodinamik
Ion-ion logam berat seperti Hg++ , Cu++ , Ag++ dan Pb++ pada kadar yang sangat rendah bersifat toksis terhadap mikrobia. Karena ion-ion tersebut dapat bereaksi dengan bagian-bagian penting dalam sel. Daya bunuh logam-logam berat pada kadar yang sangat rendah ini di sebut daya oligodinamik. Garam dari beberapa logam berat seperti air rasa dan perak dalam jumlah yang kecil saja dapat membunuh bakteri, daya mana di sebut oligodinamik. Hal ini mudah sekali di pertunjukkan dengan suatu eksperimen. Sayang benar garam dari logam berat itu mudah merusak kulit, makan alatalat yang terbuat dari logam, dan lagipula mahal harganya. Meskipun demikian, orang masih biasa menggunakan merkuroklorida (sublimat) sebagai desinfektan. Hanya untuk tubuh manusia lazimnya kita pakai merkurokrom, metafen atau mertiolat. Persenyawaan air rasa yang organic dapat pula dipergunakan untuk membersihkan biji-bijian supaya terhindar dari gangguan bangsa jamur. Nitrat perak 1 sampai 2% banyak digunakan untuk menetesi selaput lender, misalnya pada mata bayi yang baru lahir untuk mencegah gonorhoea. Banyak juga orang yang mempergunakan persenyawaan perak dan protein. Garam tembaga jarang dipakai sebagai bakterisida, akan tetapi banyak digunakan untuk menyemprot tanamantanaman mematikan tumbuhan ganggang dikolam-kolam renang.
13. Desinfektan
Pada umumnya bakteri muda itu kurang daya-tahannya terhadap desinfektan daripada bakteri yang tua. Pekat encernya konsentrasi, lama berada dibawah pengaruh desinfektan, merupakan faktor-faktor yang masuk pertimbangan pula. Kenaikan suhu menambah daya desinfektan. Selanjutnya, medium dapat juga menawar daya desinfektan. Susu, plasma darah, dan zat-zat lain yang serupa protein sering melindungi bakteri terhadap pengaruh desinfektan tertentu. Dalam menggunakan desinfektan haruslah diperhatikan hal-hal tersebut dibawah ini. Apakah suatu desinfektan tidak meracuni suatu jaringan, apakah ia tidak menyebabkan rasa sakit, apakah ia tidak memakan logam, apakah ia dapat diminum, apakah ia stabil, bagaimanakah baunya, bagaimanakah warnanya, apakah ia mudah dihilangkan dari pakaian apabla desinfektan tersebut sampai kena pakaian, dan apakah ia murah harganya. Faktor-faktor inilah yang menyebabkan orang sulit untuk menilai suatu desinfektan. Zat-zat yang dapat membunuh atau menghambat pertumbuhan bakteri dapat dibagi atas garam-garam logam, fenol dan senyawa-senyawa lain yang sejenis, formaldehida, alcohol, yodium, klor dan persenyawaan klor, zat warna, detergen, sulfonamide, dan anti biotik.
a. Fenol Dan Senyawa-Senyawa Lain Yang Sejenis
Larutan fenol 2 sampai 4% berguna bagi desinfektan. Kresol atau kreolin lebih baik khasiatnya daripada fenol. Lisol ialah desinfektan yang berupa campuran sabun dengan kresol; lisol lebih banyak digunakan daripada desinfektan-desinfektan yang lain. Karbol ialah lain untuk fenol. Seringkali orang mencampurkan bau-bauan yang sedap, sehingga desinfektan menjadi menarik.
b. Formaldehida (CH2O)
Suatu larutan formaldehida 40% biasa disebut formalin. Desinfektan ini banyak sekali digunakan untuk membunuh bakteri, virus, dan jamur. Formalin tidak biasa digunakan untuk jaringan tubuh manusia, akan tetapi banyak digunakan untuk merendam bahanbahan laboratorium, alat-alat seperti gunting, sisir dan lain-lainnya pada ahli kecantikan.
c. Alkohol
Etanol murni itu kurang daya bunuhnya terhadap bakteri. Jika dicampur dengan air murni, efeknya lebih baik. Alcohol 50 sampai 70% banyak digunakan sebagai desinfektan.
d. Yodium

Yodium-tinktur, yaitu yodium yang dilarutkan dalam alcohol, banyak digunakan orang untuk mendesinfeksikan luka-luka kecil. Larutan 2 sampai 5% biasa dipakai. Kulit dapat terbakar karenanya , oleh sebab itu untuk luka-luka yang agak lebar tidak digunakan yodium-tinktur.
e. Klor Dan Senyawa Klor
Klor banyak digunakan untuk sterilisasi air minum. Persenyawaan klor dengan kapur atau natrium merupakan desinfektan yang banyak dipakai untuk mencuci alat-alat makan dan minum.
f. Zat Warna
Beberapa macam zat warna dapat menghambat pertumbuhan bakteri. Pada umumnya bakteri gram positif iktu lebih peka terhadap pengaruh zat warna daripada bakteri gram negative. Hijau berlian, hijau malakit, fuchsin basa, kristal ungu sering dicampurkan kepada medium untuk mencegah pertumbuhanbakteri gram positif. Kristal ungu juga dipakai untuk mendesinfeksikan luka-luka pada kulit. Dalam penggunaan zat warna perlu diperhatikan supaya warna itu tidak sampai kena pakaian.
g. Obat Pencuci (Detergen)
Sabun biasa itu tidak banyak khasiatnya sebagai obat pembunuh bakteri, tetapi kalau dicampur dengan heksaklorofen daya bunuhnya menjadi besar sekali. Sejak lama obat pencuci yang mengandung ion (detergen) banyak digunakan sebagai pengganti sabun. Detergen bukan saja merupakan bakteriostatik, melainkan juga merupakan bakterisida. Terutama bakteri yang gram positif itu peka sekali terhadapnya. Sejak 1935 banyak dipakai garam amonium yang mengandung empat bagian. Persenyawaan ini terdiri atas garam dari suatu basa yang kuat dengan komponen-komponen. Garam ini banyak sekali digunakan untuk sterilisasi alat-alat bedah, digunakan pula sebagai antiseptik dalam pembedahan dan persalinan, karena zat ini tidak merusak jaringan, lagipula tidak menyebabkan sakit. Sebagai larutan yang encer pun zat ini dapat membunuh bangsa jamur, dapat pula beberapa genus bakteri Gram positif maupun Gram negatif. Agaknya alkil-dimentil bensil-amonium klorida makin lama makin banyak dipakai sebagai pencuci alat-alat makan minum di restoran-restoran. Zat ini pada konsentrasi yang biasa dipakai tidak berbau dan tidak berasa apa-apa.
h. Sulfonamida
Sejak 1937 banyak digunakan persenyawaan-persenyawaan yang mengandung belerang sebagai penghambat pertumbuhan bakteri dan lagi pula tidak merusak jaringan manusia. Terutama bangsa kokus seperti Streptococcus yang menggangu tenggorokan, Pneumococcus, Gonococcus, dan Meningococcus sangat peka terhadap sulfonamida. Penggunaan obat-obat ini, jika tidak aturan akan menimbulkan gejalagejala alergi, lagi pula obat-obatan ini dapat menimbulkan golongan bakteri menjadi kebal terhadapnya. Khasiat sulfonamida itu terganggu oleh asam-p-aminobenzoat. Asam-p-aminobenzoat memegang peranan sebagai pembantu enzim-enzim pernapasan, dalam hal itu dapat terjadi persaingan antara sulfanilamide dan asam-paminobenzoat. Sering terjadi, bahwa bakteri yang diambil dari darah atau cairan tubuh orang yang habis diobati dengan sulfanilamide itu tidak dapat dipiara di dalam medium biasa. Baru setelah dibubuhkan sedikit asam-p-aminobenzoat ke dalam medium tersebut, bakteri dapat tumbuh biasa.
.

Gambar 5.5 Rumus bangun sulfonamide dan asam-p-aminobenzoat

i. Antibiotik
Menurut Waksman, antibiotik ialah zat-zat yang dihasilkan oleh mikroorganisme, dan zat-zat itu dalam jumlah yang sedikit pun mempunyai daya penghambat kegiatan mikroorganisme yang lain. Antibiotik yang pertama dikenal ialah pinisilin, yaitu suatu zat yang dihasilkan oleh jamur Pinicillium. Pinisilin di temukan oleh Fleming dalam tahun 1929, namun baru sejak 1943 antibiotik ini banyak digunakan sebagai pembunuh bakteri. Selama Perang Dunia Kedua dan sesudahnya bermacam-macam antibiotik diketemukan, dan pada dewasa ini jumlahnya ratusan.
Genus Streptomyces menghasilkan streptomisin, aureomisin, kloromisetin, teramisin, eritromisin, magnamisin yang masing-masing mempunyai khasiat yang berlainan. Akhir-akhir ini orang telah dapat membuat kloromisetin secara sintetik, obat-obatan ini terkenal sebagai kloramfenikol. Diharapkan antibiotik-antibiotik yang lain pun dapat dibuat secara sintetik pula.
Ada yang kita kenal beberapa antibiotik yang dapat dihasilkan oleh golongan jamur, melainkan oleh golongan bakteri sendiri, misalnya tirotrisin dihasilkan oleh Bacillus brevis, basitrasin oleh Bacillus subtilis, polimiksin oleh Bacillus polymyxa.Antibiotik yang efektif bagi banyak spesies bakteri, baik kokus, basil, maupun spiril, dikatakan mempunyai spektrum luas. Sebaliknya, suatu antibiotik yang hanya efektif untuk spesies tertentu, disebut antibiotik yang spektrumnya sempit. Pinisilin hanya efektif untuk membrantas terutama jenis kokus, oleh karena itu pinisilin dikatakan mempunyai spektrum yang sempit. Tetrasiklin efektif bagi kokus, basil dan jenis spiril tertentu, oleh karena itu tetrasiklin dikatakan mempunyai spektrum luas. Sebelum suatu antibiotik digunakan untuk keperluan pengobatan, maka perlulah terlebih dahulu antibiotik itu diuji efeknya terhadap spesies bakteri tertentu. Pada medium agar-agar yang telah disebari spesies bakteri tertentu diletakkan beberapa kepingan kertas yang masing-masing mengandung antibiotik yang diuji dalam kontrentasi yang tertentu. Jika sesudah 24 jam kemudian tidak nampak pertumbuhan bakteri sekitar bahwa bakteri itu tercekik pertumbuhannya oleh antibiotik yang terkandung dalam kepingan kertas. Besar kecilnya daerah kosong sekitar kepingan kertas itu sesuai dengan konsentrasi antibiotik yang terkandung didalamnya.
Sesuai dengan keperluan, maka suatu antibiotik dapat diberikan kepada seorang pasien dengan jalan penelanan atau penyuntikan. Penyuntikan dapat dilakukan intra vena (dalam pembuluh darah balik) atau intra muscular (dalam daging).
a. daerah pertumbuhanbakteri

b. kepingan kertas yangmengandung antibioticdalam konsentasitertentu.
c. daerah kosong
a. daerah pertumbuhanbakteri
b. kepingan kertas yangmengandung antibioticdalam konsentasitertentu.
c. daerah kosong
Gambar 5.6 Pengaruh antibiotic terhadap pertumbuhan bakteri, M adalah agar-agar lempengan yang disebari bakteri
j. Garam – Garam Logam
Garam dari beberapa logam berat seperti air raksa dan perak dalam jumlah yang kecil saja dapat menumbuhnkan bakteri, daya mana disebut oligodinamik. Hal ini mudah sekali dipertunjukkan dengan suatu eksperimen.
Sayang benar garam dari logam berat itu mudah merusak kulit, maka alat–alat yang terbuat dari logam, dan lagi pula mahal harganya. Meskipun demikian orang masih bisa menggunakan merkuroklorida (sublimat) sebagai desinfektan. Hanya untuk tubuh manusia lazimnya kita pakai merkurokrom, metafen atau mertiolat.
Persenyawaan air rasa yang organik dapat pula dipergunakan untuk membersihkan biji – bijian supaya terhindar dari gangguan bangsa jamur. Nitrat perak 1 sampai 2% banyak digunakan untuk menetesi selaput lendir, misalnya pada mata bayi yang baru lahir untuk mencegah gonorhoea. Banyak juga orang mempergunakan persenyawaan perak dengan protein. Garam tembaga jarang dipakai sebagai bakterisida, akan tetapi banyak digunakan untuk menyemprot tanaman dan untuk mematikan tumbuhan ganggang di kolam–kolam renang.
Cara Menilai Khasiat Desinfektan
Untuk mengetahui kekuatan masing-masing desinfektan, orang perlu mempunyai suatu ukuran pokok. Adapun zat yang dipakai ialah fenol. Mikroorganisme yang dipakai sebagai penguji khasiat desinfektan ialah Salmo nella typhosa, kadang-kadang digunakan juga Micrococcus aureus. Desinfektan yang akan diuji itu di encerkan menurut perbandingan tertentu. Misal, kita membuat 2 larutan fenol, yang satu (1:90) dan yang lain (1:100). Di samping itu kita membuat beberapa larutan suatu desinfektan A yang akan kita banding khasiatnya dengan khasiat fenol. Katakan, larutan desinfektan A itu (1:300), (1:350), (1:400), (1:450). Dari tiap-tiap larutan kita ambil 5 ml untuk kita masukkan dalam tabung steril banyaknya tabung sesuai dengan banyaknya larutan fenol dan desinfektan A. kita memerlukan 3 perangkat dalam pengujian ini, yaitu 12 tabung untuk desinfektan 0,5 ml inokulum Salmonella typhosa yang masih muda. Setelah 5 menit berada di dalam larutan, maka diambillah satu kolong inokulum untuk digesekkan pada agar-agar lempengan, dan piaraan ini kemudian disimpan dalam suhu 37 °C. Setelah berselang 48 jam piaraan dapat diperiksa tentang ada tidaknya koloni-koloni Salmonella. Jika tak ada pertumbuhan, hal ini berarti bahwa bakteri telah mati ketika diambil dari tabung yang berisi larutan desinfektan. Hal semacam ini dikerjakan pula dengan perangkat kedua, dimana Salmonella dibiarkan berada dalam larutan selama 10 menit. Di dalam perangkat yang ketiga bakteri dibiarkan selama 15 menit berada dalam desinfektan.
5.2 Faktor-Faktor Biotik
Faktor-faktor biotik ialah faktor-faktor yang disebabkan jasad (mikrobia)
atau kegiatannya yang dapat mempengaruhi kegiatan (pertumbuhan) jasad atau mikrobia lain. Faktor-faktor tersebut antara lain ialah adanya asosiasi atau kehidupan bersama diantara jasad. Asosiasi dapat dalam bentuk komensalisme, mutualisme, parasitisme, simbiose, sinergisme, antibiose dan sintropisme.
Komensalisme
Merupakan asosiasi yang sangat renggang, dimana salah satu jenis mendapatkan keuntungan sedang lainnya tidak mendapat keuntungan atau kerugian.
Mutualisme
Merupakan bentuk assosiasi dimana masing-masing jenis mendapat keuntungan. Sering simbiosis dipakai untuk menyatakan bentuk assosiasi yang mutualistik, tetapi sekarang orang lebih banyak menggunakan istilah mutualisme. Sebagai contoh mutualisme antara bakteri Rhizobium dengan polong-polongan.

Parasitisme
Merupakan bentuk assosiasi diantara parasit dengan jasad inang. Jasad parasit yang obligat dapat merusak jasad inang dan pada akhirnya memusnahkan. Keadaan ini akan dapat pula memusnahkan (melenyapkan) parasitnya sendiri, karena jasad inang sebagai sumber kehidupannya.
Simbiosis
Simbiosis ialah asosiasi antara dua atau lebih jasad (mikrobia) di mana satu jenis (spesies) di antara jasad yang berasosiasi tersebut mendapat keuntungan, Sedangkan jasad yang lain mungkin mengalami kerugian atau tidak, tergantung pada macamnya simbiose. Simbiose dapat dibedakan tiga macam, ialah komensalisme, mutualisme, dan
parasitisme.
Sinergisme
Sinergisme ialah suatu bentuk asosiasi yang menyebabkan terjadinya suatu kemampuan untuk melakukan perubahan kimia tertentu dalam suatu subtrat atau medium. Tanpa sinergisme masing-masing mikkrobatidak mampu melakukan perubahan tersebut.
Antibiosis
Antibiosis disebut juga antagonisme atau amensalisme ialah suatu bentuk asosiasi antara jasat (mikkroba) yang menyebabkan salah satu pihak dalam asosiasi tersebut terbunuh. tErhambat pertumbuhannya atau mengalami gangguan-gangguan yang lain. Contohnya adanya pembentukan toksindan sat-sat antibiotika oleh salah satu mikroorganisme pada suatu asosiasi.
Sintropisme
Sintropisme disebut juga nutrisi bersama atau mutualnutrition ialah bentuk asosiasi yang lebih komplek . sebab biasanya terdiri atas berjenis-jenis mikroorganisme yang satu dengan yang lainnyaakan saling menstimulasi kegiatan {pertumbuhan}-nya misalnya mikrobia jenis pertama akan menguraikan suatu subtrad yang hasilnya dapat digunakan dan di uraikan oleh mikrobia jenis kedua dan yang hasil hasilnya dapat digunakan oleh mikrobia jenis ketiga dan seterusnya yang hasil hasilnya akhirnya dapat menstimulasi kegiatan mikrobia jenis pertama.
5.3 Fungi Dan Lingkungannya
Christensen (1957) membagi fungi dalam 3 golongan berdasar keadaan lingkungan perkembangannya yaitu: 1) fungi lapangan (field fungi), 2) fungi penyimpanan (storage fungi) dan 3) fungi perusakan lanjutan (advanced decay fungi). Golongan 3) merupakan bagian sementara, sedang 2 bagian terdahulu khusus padakomoditas biji-bijian. (Bothast, 1978). Fungi lapangan menyerang bijian yang sedang dan masak penuh dengan kandungan air paling sedikit 20% atau keseimbangan lembab relatif (Rh) 90 – 100%; fungi penyimpanan menyerang bijian yang tersimpan setelah panen dengan kandungan air sekitar 13 – 20 % atau keseimbangan lembab relative (Rh) 70 – 90% (Bothast, 1978).
Contoh fungi lapangan adalah alternaria, Fusarium, Helminthosporium dan Cladosporium (Uraguci dan yamazaki, 1978). Juga termasuk pula Curvularia, Stemphylium, Epicoccum dan Nigospora yang umumnya menyerang dekat atau saat panen (Bothast, 1978). Menurut Christensen dan Kauftmann (1969) dilaporkan lebih dari 150 spesies fungi telah diisolasi dari bagian biji tanaman. Fungi yang dominan pada suatu komoditas tergantung atas macam tanaman, wilayah atau lokasi geografis dan keadaan iklim. Alternaria, umumnya banyak terdapat pada biji sayuran atau biji serealia, namun tidak hanya terbatas pada biji serealia. Cladosporium umumnya pada biji serelia dalam kondisi basah selama panennya, dan pada tempat
penyimpanan fungi ini hamper tidak terdapat. Helminthosporium banyak didapat pada jenis padi, barley, dan obat khususnya bila terjadi cuaca lembab sebelum panen. Fusarium banyak terdapat pada serealia yang baru dipanen. Pada barley, gandum, dan jagung dikenal sebagai bentuk “kudis” biji-biji yangdemikian dapat mendatangkan kercunan pada hewan maupun manusia(Uraguchi dan Yamazaki, 1978). Beberapa spesies tertentu penicillium kadang-kadang dimasukkan dalam fungi lapangan (Mislivec dan Tuite, 1970).
Fungi penyimpanan juga terdiri dari beberapa spesies antara lain Penicillium, Aspergillus dan Sporendomena dan kadang-kadang beberapa jenis khamir (Uraguchi dan Yamazaki, 1978). Penicillium dan Aspergillus merupakan fungi yang diketahui ada dimana-mana dan hamper terdapat disetiap wilayah. Kebanyakan fungi penyimpanan terdiri dari dari 5 atau 6 golongan Apergillus dan baru kemudian dan beberapa spesies Penicillium sampai terjadi kerusakan lebih lanjut (Christensen dan Kaufmann, 1974). Wallace (1973)menyebutkan 26 spesies Aspergillus dan 66 spesies Penicillium yang dapat diisolasi pada produk simpanan. Selain Aspergillus dan Penicillium dikategorikan pula dalam fungi penyimpanan adalah Absidia, Mucor, Rhizopus, Chaetomium, Scopulariopis, Paecylomices, dan Neurospora. Ibasidia, Mucor dan Rhizopus pada umumnya ada hubungannya dengan kerusakan pada kondisi lembab, karena mereka menghendaki suatu lembab relatif (Rh) minimum 88% untuk pertumbuhannya, mereka bukanlah fungi pemula kerusakan bahan dalam penyimpanan (Wallace, 1973). Kekecualian adalah Aspergillus flavus yang dapat menyerang bahan dilapangan (meski termasuk fungi penyimpanan) demikian pula Fusarium akan dapat melanjutkan kerusakan bahan bijian dalam gudang (meski termasuk fungi lapangan) bila kandungan air bahan cukup tinggi (Lillehoj dkk,1975;1976; Caldwell dan Tuite, 1974).
Terdapat beberapa faktor pokok yang akan mempengaruhi perkembangan fungi pada bahan pangan yang disimpan, antara lain: 1) Kandungan air bijian yang disimpan, 2) suhu ruang penyimpanan, 3)periode penyimpanan, 4) derajat awal penyerangan oleh fungi sebelum sampai tempat penyimpanan, 5) banyknya benda-benda asing (bukan bahan sejenisnya) dan 6) terdapatnya aktivitas serangga dan kutu dalam ruang simpan (Uraguchidan Yamazaki, 1978). Faktor-faktor seperti disebutkan diatas ditujukan pada bahan dimana fungi tumbuh, maka untuk pertumbuhan fungi endiri memerlukan faktor fisik-khemis antara lain 1) suhu, 2) aktivitasair (water activity), 3) tekanan osmosis, 4) pH, 5) potensial oksidasi-reduksi
(Eskin dkk, 1975). Suhu dan aktivitas air sangatlah penting dan perlu mendapat perhatian, disamping faktor lainnya. Lihatlah dua table dibawah ini. Fungi pada umumnya akan dapat berkembang baik pada aw sekitar 0,65- 0,80, sedangkan golongan fungi hidrofil diinginkan aw mencapai 0,89. Dalam kaitannya dengan kelembaban relatif (Rh) yang dapat diukur dari sekeliling bahan maka umumnya diharapkan kelembaban relatif sekitar 70-80%.
Setiap jenis fungi selain adalah batasan-batasan normal, mempunyai kekhususan diantara spesies dan lainnya seperti terlihat pada beberapa table kelembaban relatif, suhu dan lainnya. Dibawah ini diberikan gambaran Rh ruang penyimpanan dan suhu untuk pertumbuhan beberapa fungi penyimpanan yang penting.
Kelembaban relatif minimum untuk perkecambahan fungi umumnya adalah 75% pada suhu biasa, dalam keadaan iniuntuk setiap bahan bijian akan berbeda kandungan airnya sesuai komposisi (Pomeranz, 1974). Keseimbangan lembab relatif bijian lebih penting daripada kandungan air guna mengendalikan kerusakan fungi dalam ruang penyimpanan, meskipun keduanya mempunyai hubungan erat. Pertumbuhan fungi berkaitan dengan kenaikan suhu yang dipengaruhi berbagai faktor antara laininaktivitas thermal enzim, kehilangan substrat, mengecilnya oksigen dan kandungan air atau akumulasi CO2 menjadi terbatas. Hubungan antara bagian-bagian tersebut sangat kompleks maka kondisi minimum, optimum dan maksimum
sebagaimana tercantum dalam tabel diatas adalah perkiraan (Christensen dan Kaufmann, 1974)

PERTUMBUHAN MIKROORGANISME


OLEH:DR.H. AGUS KRISNO BUDIYANTO, M.KES

DOSEN PENDIDIKAN BIOLOGI UMM

4.1 Pendahuluan
Bila bakteri diinokulasi ke dalam suatu medium yang sesuai dan pada keadaan yang optimum bagi pertumbuhannya, maka terjadi kenaikan jumlah yang amat tinggi dalam waktu yang relatif pendek. Perbanyakan seperti ini disebabkan oleh pembelahan sel secara aseksual. Pembelahan sel terjadi secara pembelahan biner melintang. Pembelahan biner melintang adalah suatu proses reproduksi aseksual. Setelah pembentukan dinding sel melintang maka satu sel tunggal membelah menjadi dua sel, dan disebut sel anak. Beberapa spesies mikroorganisme dapat bereproduksi dengan proses tambahan termasuk produksi spora reproduktif, fragmentasi pertumbuhan berfilamen, dengan masing-masing fragmen menghasilkan pertumbuhan dan penguncupan.
Para peneliti mikrobiologi tertarik untuk menentukan dengan tepat apa yang terjadi di dalam sel induk ketika berevolusi ke suatu taraf pada saat membelah menjadi dua sel baru. Hasil–hasil penelitian mengenai proses pembelahan sel telah menampakkan hal- hal berikut:
Terdapat kenaikan jumlah bahan inti, yang terpisah menjadi dua unit, satu untuk masing-masing sel anak baru.
Dinding sel dan membran sel tumbuh ke arah luar dan membran sel tumbuh (meluas) ke dalam sitoplasma pada suatu titik di tengah-tengah sumbu panjang sel. Pada perbatasan tersebut disintesis dua lapisan bahan dinding sel.
Pembentukan mesosom menjadi lebih jelas. Mesosom mempunyai kaitan dengan pembentukan septum (dinding sel yang membagi) dan juga memungkinkan perpautan dengan daerah inti.
Pertumbuhan digunakan untuk bakteri dan mikroorganisme lain dan biasanya mengacu pada perubahan di dalam hasil panen sel (pertambahan total massa sel) dan bukan perubahan individu organisme. Inokulum hamper selalu mengandung ribuan organisme. Pertumbuhan menyatakan pertambahan jumlah dan massa melebihi yang ada di dalam inokulum asalnya. Selama fase pertumbuhan seimbang (balanced growth), maka pertambahan massa melebihi massa bakteri berbanding lurus (proporsial) dengan pertambahan komponen selular yang lain seperti DNA, RNA, dan protein. Oleh karena itu maka mungkinlah untuk mengembangkan pengukuran bagi pertumbuhan dengan berbagai cara.
Cara khas reproduksi bakteri ialah pembelahan biner melintang; satu sel membelah diri, menghasilkan dua sel. Jadi bila kita mulai dengan satu bakteri tumggal, maka populasi bertambah secara geometric 1 �� 2 �� 22 �� 23 �� 24 �� 25…..2n atau dengan perhitungan sederhana,1 �� 2 �� 4 �� 8 �� 16 �� 23……
Istilah pertumbuhan sebagaimana digunakan pada bakteri mengacu pada perubahan dalam populasi total dan bukannya perubahan dalam suatu individu organisme saja. Tambahan pula pada kondisi pertumbuhan seimbang ada suatu pertambahan semua komponen selular secara teratur. Akibatnya, pertumbuhan dapat ditentukan tidak hanya dengan cara mengukur jumlah sel tetapi juga dengan mengukur jumlah berbagai komponen selular (RNA, DNA, protein) dan juga produk-produk metabolism tertentu. Pertumbuhan mikroorganisme dapat diketahui dengan berbagai metode.

Tabel 4.1 Rangkaian metode-metode untuk mengukur pertumbuhan bakteri

Metode                 Penggunaan
Hitungan mikroskopik     Perhitungan bakteri dalam susu dan vaksin
Hitungan cawan     Perhitungan bakteri dalam susu, air, makanan, tanah, biakan dan sebagainnya
Membran atau filter        Sama seperti hitungan cawan
Molekuler
Pengukuran kekeruhan     Uji mikrobiologis, pendugaan hasil panen sel
dalam kaldu, biakan, atau suspense berair
Penentuan nitrogen         Pengukuran panen sel dari suspense biakan
kental untuk digunakan pada
penelitian mengenai metabolisme
Penentuan berat        Sama seperti untuk penentuan nitrogen
Pengukuran aktivitas        Uji mikrobiologis
biokimiawi

4.2 Pertumbuhan Mikroorganisme
Pertumbuhan merupakan proses perubahan bentuk yang semula kecil kemudian menjadi besar. Pertumbuhan menyangkut pertambahan volume dari individu itu sendiri. Pertumbuhan pada umumnya tergantung pada kondisi bahan makanan dan juga lingkungan. Apabila kondisi makanan dan lingkungan cocok untuk mikroorganisme tersebut, maka mikroorganisme akan tumbuh dengan waktu yang relatif singkat dan sempurna.
Pertumbuhan mikroorganisme yang bersel satu berbeda dengan mikroorganisme yang bersel banyak (multiseluler). Pada mikroorganisme yang bersel satu (uniseluler) pertumbuhan ditandai dengan bertambahnya sel tersebut. Setiap sel tunggal setelah mencapai ukuran tertentu akan membelah menjadi mikroorganisme yang lengkap, mempunyai bentuk dan
sifat fisiologis yang sama. Pertumbuhan jasad hidup, dapat ditinjau dari dua segi, yaitu pertumbuhan sei secara individu dan pertumbuhan kelompok sebagai satu populasi.
Pertumbuhan sel diartikan sebagai adanya penambahan volume serta bagian-bagian sel lainnya, yang diartikan pula sebagai penambahan kuantiatas isi dan kandungan didalam selnya. Pertumbuhan populasi merupakan akibat dari adanya pertumbuhan individu, misal dari satu sel menjadi dua, dari dua menjadi empat ,empat menjadi delapan, dan seterusnya hingga berjumlah banyak.

Pada mikroorganisme, pertumbuhan individu (sel) dapat berubah langsung menjadi pertumbuhan populasi. Sehingga batas antara pertumbuhan sel sebagai individu serta satu kesatuan populasi yang kemudian terjadi kadang-kadang karena terlalu cepat perubahannya, sulit untuk diamati dan dibedakan. Pada pertumbuhan populasi bakteri misalnya, merupakan penggambaran jumlah sel atau massa sel yang terjadi pada saat tertentu. Kadang-kadang didapatkan bahwa konsentrasi sel sesuai dengan jumlah sel perunit volume, sedang kerapatan sel adalah jumlah materi perunit volume.
Penambahan dan pertumbuhan jumlah sel mikroorganisme pada umumnya dapat digambarkan dalam bentuk kurva pertumbuhan. Kurva tersebut merupakan penjabaran dari penambahan jumlah sel dalam waktu tertentu, misal bernilai b, maka:
a. Pada generasi pertama, b = 1×2
b. Pada generasi kedua,b = 1×22
c. Pada generasi ke-n,b = 1x2n sehingga akhirnya: b=a x 2n
Dengan perhitungan logaritma, persamaan dapat dituliskan menjadi :
Log b = log 10a + alog 102
= log 10a + 0,301 n
= log 10b – log 10a
atau n = 0,301
Pertumbuhan bakteri dalam biak statik akan mengikuti kurva pertumbuhan. Jika bakteri ditanam dalam suatu larutan biak, maka bakteri akan terus tumbuh sampai salah satu faktor mencapai minimum dan pertumbuhan menjadi terbatas. Pertumbuhan biak bakteri dengan mudah dapat dinyatakan secara grafik dengan logaritme jumlah sel hidup terhadap waktu. Suatu kurva pertumbuhan punya bentuk sigmoid dan dapat dibedakan dalam beberapa tahap pertumbuhan. Ada beberepa tahap pertumbuhan yaitu : terdapat kurva pertumbuhan atau gambar.
Tahap ancang-ancang yang mencakup interval waktu antara saat penanaman dan saat tercapainya kecepatan pembelahan maksimum, lamanya tahap ancang-ancang ini terutama tergantung dari biak wal, umur bahan yang ditanam dan juga dari sifat larutan biak.
Tahap eksponensial; Pada tahap pertumbuhan eksponensial terciri oleh kecepatan pembelahan maksimum yang konstan kecepatan pembelahan diri sepanjang tahap log bersifat spesifik untuk tiap jenis bakteri dan tergantung lingkungan.
Tahap stationer; Tahap ini dimulai kalau sel-sel sudah tidak tumbuh lagi. Kecepatan pertumbuhan tergantung dari kadar substrat, menurunnya kecepatan pertumbuhan sudah terjadi ketika kadar subtrat berkurang sebelum subtrat habis terpakai. Massa bakteri yang dicapai pada tahap stationer dinamakan hasil atau keuntungan.
Tahap kematian; Pada tahap kematian dan sebab-sebab kematian sel bakteri dalam larutan biak normal masih kurang diteliti. Ada kemungkinan bahwa sel-sel dihancurkan oleh pengaruh enzim asal sel sendiri (otolisis)
Pertumbuhan bakteri dalam biak sinambung tidak akan mengikuti kurva pertumbuhan. Dalam pertumbuhan bakteri ini terdapat prosedur yang menjadi dasar biak sinambung yang dilakukan dalam kemostat dan turbidostat
1. Pertumbuhan dalam kemostat
Kemostat terdiri dari bejana biak yang dimasuki larutan biak dari bejana persediaan dengan kecepatan aliran tetap. Diusahakan dalam bejana biak terdapat pemasokan O2 secara optimum dan supaya selekas mungkin terjadi distribusi merata dari nutrien yang dialirkan masuk sebagai larutan biak. Kecepatan pertambahan dinyatakan sebagai μx = dx/dt dan kerapatan bakteri meningkat dengan x = x0 e μ/t. Biak dalam kemostat dikendalikan subtrat. Stabilitas sistem ini berlandaskan keterbatasan kecepatan tumbuh oleh konsentrasi subtrat yang diperlukan pertumbuhan (donor H, sumber N, Sumber S, atau sumber P).
2. Pertumbuhan dalam turbidostat
Sistem ini didasarkan pada kerapatan bakteri tertentu atau kekeruhan tertentu yang dipertahankan konstan. Ada perbedaan mendasar antara biak statik klasik dengan biak sinambung dalam kemostat biak static harus dilihat sebagai sistem tertutup (boleh disamakan dengan organisme sial, tahap stationer dan tahap kematian. Kalau pada biak sinambung merupakan sistem terbuka yang mengupayakan keseimbangan aliran untuk organisme selalu terdapat kondisi lingkungan yang sama.
Dalam pertumbuhan sinkron akan terjadi sinkronisasi pembelahan sel. Hal ini dimaksudkan agar proses metabolisme siklus pembelahan bakteri dapat dipelajari disperlukan suspensi sel yang mengalami pembelahan sel dalam waktu sama yaitu sinkron. Sinkronisasi populasi sel dapat dicapai dengan berbagai tindakan buatan antara lain dengan merubah suhu rangsangan cahaya, pembatasan nutrien atau menyaring untuk memperoleh sel-sel yang sama ukurannya. Sinkronisasi pertumbuhan ini juga dimaksudkan untuk menyediakan stater dengan usia yang sama.
4.3 Fase-Fase Pertumbuhan Mikroorganisme
Secara umum fase-fase pertumbuhan mikroorganisme adalah sebagai berikut.
1. Fase lag (fase masa persiapan, fase adaptasi, adaptation phase)
Pada fase ini laju pertumbuhan belum memperlihatkan pertumbuhan ekponensial, tetapi dalam tahap masa persiapan. Hal ini tergantung dari kondisi permulaan, apabila mikroorganisme yang ditanami pada substrat atau medium yang sesuai, maka pertumbuhan akan terjadi. Namun sebaliknya apabila diinokulasikan mikroorganisme yang sudah tua meskipun makanannya cocok, maka pertumbuhannya mikroorganisme ini membutuhkan masa persiapan atau fase lag. Waktu yang diperlukan pada fase ini digunakan untuk mensintesa enzim. Sehingga mencapai konsentrasi yang cukup untuk melaksanakan pertumbuhan ekponensial. Fase ini berlangsung beberapa jam hingga beberapa hari, tergantung dari jenis mikroorganisme serta lingkungan yang hidup.
Selama fase ini perubahan bentuk dan pertumbuhan jumlah individu tidak secara nyata terlihat. Karena fase ini dapat juga dinamakan sebagai fase adaptasi (penyesuaian) ataupun fase-pengaturan jasad untuk suatu aktivitas didalam lingkungan yang mungkin baru. Sehingga grafik selama fase ini umumnya mendatar.
Kalau G ( = waktu generasi rata-rata ) sama dengan t ( = waktu yang dibutuhkan dari jumlah a menjadi b ) dibagi oleh a ( = jumlah keturunan ) sehingga:
G = t / n
=         0,301
log10a -  -log10b
2. Fase tumbuh dipercepat (fase logaritme, fase eksponensial, logaritma phase)
Pada setiap akhir persiapan sel mikroorganisme akan membelah diri.masa ini disebut masa pertumbuhan, yang setiap selnya tidak sama dalam waktu masa persiapan.Sehingga secara berangsur-angsur kenaikan jumlah populasi sel mikroorganisme ini mencapai masa akhir fase pertumbuhan mikroorganisme.
Setelah setiap individu menyesuaikan diri dengan lingkungan baru selama fase lag, maka mulailah mengadakan perubahan bentuk dan meningkatkan jumlah individu sel sehingga kurva meningkat dengan tajam (menanjak). Peningkatan ini harus diimbangi dengan banyak faktor, antara lain:
Faktor biologis, yaitu bentuk dan sifat jasad terhadap lingkungan yang ada, serta assosiasi kehidupan di antara jasad yang ada kalau jumlah jenis lebih dari sebuah.
Faktor non-biologis, antara lain kandungan sumber nutrien di dalam media, temperatur, kadar oksigen, cahaya, dan lain sebagainya.
Kalau faktor-faktor di atas optimal, maka peningkatan kurva akan nampak tajam seperti gambar. Pada fase ini pertumbuhan secara teratur telah tercapai. Maka pertumbuhan secara ekponensial akan tercapai. Pada fase ini menunjukkan kemampuan mikroorganisme berkembang biak secara maksimal. Setiap sel mempunyai kemampuan hidup dan berkembang biak secara tepat. Fase pengurangan pertumbuhan akan terlihat berupa keadaan puncak dari fase logaritmik sebelum mencapai fase stasioner, dimana penambahan jumlah individu mulai berkurang atau menurun yang di sebabkan oleh banyak faktor, antara lain berkurangnya sumber nutrien di dalam media tercapainya jumlah kejenuhan pertumbuhan jasad. Fase tumbuh reda akan terlihat dimana fase logaritma mencapai puncaknya, maka zat-zat makanan yang diproduksi oleh setiap sel mikroorganisme akan mengakibatkan pertumbuhan mikroorganisme, sehingga pada masa pertumbuhan ini reda atau dikatakan sebagai fase tumbuh reda.
3. Fase stasioner
Pengurangan sumber nutrien serta faktor –faktor yang terkandung di dalam jasadnya sendiri, maka sampailah puncak aktivitas pertumbuhan kepada titik yang tidak bisa dilampaui lagi, sehingga selama fase ini, gambaran grafik seakan mendatar. Populasi jasad hidup di dalam keadaan yang maksimal stasioner yang konstan.
4. Fase kematian
Fase ini diawali setelah jumlah mikroorganisme yang di hasilkan mencapai jumlah yang konstan, sehingga jumlah akhir mikroorganisme tetap maksimum pada masa tertentu. Setelah masa dilampaui, maka secara perlahan-lahan jumlah sel yang mati melebihi jumlah sel yang hidup. Fase ini disebut fase kematian dipercepat. Fase kematian dipercepat mengalami penurunan jumlah sel, karena jumlah sel mikroorganisme mati. Namun penurunan jumlah sel tidak mencapai nol, sebab sebagian kecil sel yang mampu beradaptasi dan tetap hidup dalam beberapa saat waktu tertentu. Pada fase ini merupakan akhir dari suatu kurva dimana jumlah individu secara tajam akan menurun sehingga grafik tampaknya akan kembali ke titik awal lagi.
Gambaran pertumbuhan mikroorganisme seringkali tidak sesuai seperti yang sudah diterangkan kalau faktor-faktor lingkungan yang menyertainya tidak memenuhi persyaratan. Beberapa penyimpangan yang sering terjadi pada gambaran kurva tersebut dapat diterangkan sebagai berikut :
Pengaruh lingkungan terhadap kurva pertumbuhan
1. Kurva A : Menunjukkan terdapatnya fase lag yang cukup lama sebelum mikroorganisme dapat tumbuh dan bertambah.
2. Kurva B : Menunjukkan tidak adanya fase lag, karena begitu ditanamkan, maka pertumbuhan mikroorganisme dapat langsung ke fase logaritmik atau fase eksponensial pertumbuhan.
3. Kurva C : Menunjukkan fase lag yang panjang atau lama serta tidak dapat menyesuaikan diri dengan lingkungannya yang baru (mati).
4. Kurva D : adalah gambaran suatu kurva pertumbuahan mikroorganisme yang secara kontinu terus menerus diberi tambahan sumber nutrient, sehingga ada kesinambungan pertumbuhan walau makin lama mengarah kepada penurunan.
4.4 Faktor-Faktor Yang Mempengaruhi Pertumbuhan Mikroorganisme
A. Faktor alam
1. Temparatur
Umumnya batas daerah temperatur bagi kehidupan mikroorganisme terletak antara 0-90oC. Temperatur minimum adalah suhu paling rendah dimana kegiatan mikroorganisme masih dapat berlangsung. Temperatur maksimum adalah temperatur tertinggi yang masih dapat digunakan untuk aktifitas mikroorganisme, tetapi pada tingkatan kegiatan fisiologis paling minimal. Sedang temparatur yang paling baik bagi aktivitas hidup disebut temperatur optimum.
Berdasarkan pada daerah aktivitas temperatur, mikroorganisme dapat dibagi menjadi tiga golongan utama yaitu:
Tabel 4. 4 Daerah aktivitas temperatur mikroorganisme
Suhu Pertumbuhan
Golongan      Minimum     Optimum     Maksimum
Psychrophil     0oC         10o-15oC     30oC
Mesophil         15o-25oC     25o-37oC     40o-55oC
Thermophil     24o-45oC     50o-60oC     60o-90oC
Bakteri-bakteri patogen pada manusia termasuk bakteri Mesophil. Suhu optimumnya sama dengan suhu tubuh manusia ( 37oC ). Titik kematian termal suatu jenis mikroorganisme ialah nilai temparatur yang dapat mematikan jenis tersebut didalam waktu 10 menit pada kondisi tertentu. Sedang waktu kematian termal adalah waktu yang diperlukan untuk membunuh suatu jenis mikroorganisme pada suatu temperatur yang tetap. Kedua istilah tersebut mempunyai arti yang penting di dalam praktek, terutama di dalam industri pengawetan bahan makanan dan obat-obatan. Faktor-faktor yang mempengaruhi titik kematian termal
antara lain: waktu, temperature, kelembaban, bentuk dan jenis spora, umur mikroorganisme, pH dan komposisi medium.
Komposisi medium juga mempengaruhi kepekaan bakteri terhadap pemanasan. Adanya partikel atau benda padat dan senyawa tertentu di dalam medium akan menaikkan resistensi ( ketahanan ) mikroorganisme terhadap panas, sebab penetrasi panas kedalam medium terhalang oleh adanya benda atau zat tadi. Temparatur rendah menyebabkan gangguan pada metabolisme, jenisnya tergantung pada temparatur dan cara perlakuanya. Kematian mikroorganisme pada temperatur rendah disebabkan oleh terjadinya perubahan keadaan koloid protoplasma yang tidak reversible. Penurunan temperature yang tiba-tiba di atas titik beku dapat menyebabkan kematian, akan tetapi penurunan temperature secara bertingkat hanya mengakibatkan kegiatan metabolisme untuk sementara saja. Bila suspensi bakteri didinginkan dengan cepat dari 45oC, maka jumlah bakteri yang mati mencapai 95%, tetapi pendinginan secara bertingkat menyebabkan jumlah kematian tersebut akan berkurang.
Kematian akibat penurunan temperatur yang tiba-tiba, mungkin karena air menjadi tidak siap untuk kegiatan fisiologi. Misalnya pada pembekuan, mungkin terjadi kerusakan sel oleh adanya kristal es di dalam air antar sel. Proses pendinginan di bawah titik beku dan di dalam keadaan hampa udara secara bertingkat, banyak digunakan untuk mengawetkan biakan dan proses tersebut disebut lyofilisasi. Hasil lyofilisasi merupakan tepung yang terdiri atas sel yang lyofilik dan sangat mudah menarik air, juga tidak menyebabkan denaturasi protein sebab molekul air protoplasma di dalam proses ini langsung dirubah menjadi uap air tanpa melalui fase cair (sublimasi ).
2. Cahaya
Sebagian besar bakteri adalah chemotrophe, karena itu pertumbuhannya tidak tergantung pada cahaya matahari. Pada beberapa spesies, cahaya matahari dapat membunuhnya karena pengaruh sinar ultraviolet.
3.Kelembaban
Air sangat penting untuk kehidupan bakteri terutama karena bakteri hanya dapat mengambil makanan dari luar dalam bentuk larutan (holophytis). Semua bakteri tumbuh baik pada media yang basah dan udara yang lembab. Dan tidak dapat tumbuh pada media yang kering. Mikroorganisme mempunyai nilai kelembaban optimum. Pada umumnya untuk pertumbuhan ragi dan bakteri diperlukan kelembaban yang tinggi diatas 85%, sedang untuk jamur dan aktinomiset diperlukan kelembaban yang rendah dibawah 80%. Kadar air bebas didalam larutan merupakan nilai perbandingan antar tekanan uap air larutan dengan tekanan uap air murni, atau 1 / 100 dari kelembaban relatif. Nilai kadar air bebas didalam larutan untuk bakteri pada umumnya terletak diantara 0,90 sampai 0,999 sedang untuk bakteri halofilik mendekati 0,75. Banyak mikroorganisme yang tahan hidup didalam keadaan kering untuk waktu yang lama seperti dalam bentuk spora, konidia, arthrospora, kamidiospora dan kista. Seperti halnya dalam pembekuaan, proses pengeringan protoplasma, menyebabkan kegiatan metabolisme terhenti. Pengeringan secara perlahan menyebabkan kerusakan sel akibat pengaruh tekanan osmosa dan pengaruh lainnya dengan naiknya kadar zat terlarut.
4. pH
pH sangat berpengaruh terhadap pertumbuhan mikroorganisme. Umumnya asam mempunyai pengaruh buruk terhadap pertumbuhan bakteri. Lebih baik hidup dalam suasana netral ( pH 7,0 ) atau sedikit basa ( pH 7,2-7,4), tetapi pada umumnya dapat hidup pada pH 6,6 – 7,5. Bakteri-bakteri yang patogen pada manusia tumbuh baik pada pH 6,8-7,4, yaitu sama dengan pH darah.
Batas pH untuk pertumbuhan jasad merupakan suatu gambaran dari batas pH bagi kegiatan enzim. Untuk itu jasad dikenal nilai pH minimum, optimum, dan maksimum. Bakteri memerlukan nilai pH antara 6,5-7,5, ragi antara 4,0-4,5, sedang jamur dan aktinomiset tertentu mempunyai daerah pH yang luas. Atas dasar daerah-daerah pH bagi kehidupan mikroorganisme dibedakan adanya tiga golongan besar,yaitu:
a. Mikroorganisme yang asidofilik, yaitu jasad yang dapat tumbuh pada pH antara 2,0-5,0
b. Mikroorganisme yang mesofilik (Neutrofilik), yaitu jasad yang dapat tumbuh pada pH antara 5,5-8,0
c. Mikroorganisme yang alkalifilik, yaitu jasad yang dapat tumbuh pada pH antara 8,4-9,5.
5. O2 dari udara
Untuk melangsungkan hidupnya, makhluk hidup membutuhkan O2 yang diambil dari udara melalui pernafasan. Fungsi O2 ini sudah jelas yaitu untuk pembakaran zat-zat jaringan, sehingga dihasilkan panas dan tenaga. Hidup dalam lingkungan yang mengandung O2 dalam jumlah yang normal disebut hidup secara aerob. Organisme yang tidak hidup dalam lingkungan yang mengandung O2 bebas disebut
organisme anaerob. Berdasarkan responnya terhadap O2 bebas, maka bakteri dibagi dalam tiga golongan yaitu :
�� Bakteri aerob ( obligate aerob )
Yaitu bakteri yang hanya hidup dalam lingkungan yang mengandung O2 bebas. Misalnya : Vibroiro cholera, Corynebacterium diphtheriea
�� Bakteri anaerob ( obligate anaerob )
Yaitu bakteri yang hanya dapat hidup di dalam lingkungan yang tidak mengandung oksigen bebas. Misal: Clostridium tetani,Treptonema pallida.
�� Fakultatif aerob
Yaitu bakteri yang hidup di dalam lingkungan yang mengandung oksigen bebas maupun tidak. Misal : Salmonella typhi, Neisseria mengitidis. Bakteri-bakteri fakultatif aerob pada umumnya lebih baik tumbuh pada pada lingkungan yang sedikit mengandung oksigen bebas. Karena itu lebih tepat bila dinamakan bakteri microaerophil.
6. Tekanan osmotik
Air keluar masuk sel bakteri melalui proses osmosis, karena perbedaan tekanan osmotik antara cairan yang ada di dalam dengan sel yang ada di luar bakteri.Protoplasma selalu mengandung zat yang terlarut di dalamnya, karena itu tekanan osmotiknya selalu tinggi dari air murni. Bila bakteri dimasukkan dalam aquades, maka air akan masuk ke dalam sel bakteri. Hal ini menyebabkan bakteri menggembung, mungkin pecah dan mati. Peristiwa ini disebut Plasmoptysis.
Sebaliknya bila bakteri dimasukkan ke dalam cairan hipertonis akan menyebabkan plasma dari dinding sel dan kematian bakteri. Peristiwa ini disebut Plasmolisa.
Pada umumnya larutan hipertonis menghambat pertumbuhan, karena dapat menyebabkan plasmolisa. Tekanan osmosa tinggi banyak digunakan di dalam praktek untuk pengawetan bahan-bahan makanan, seperti pengawetan ikan dengan penambahan garam, untuk pengawetan buah-buahan dengan penambahan gula. Beberapa mikroorganisme dapat menyesuaikan diri terhadap kadar garam atau kadar gula yang tinggi, antara lain ragi yang osmofil (dapat tumbuh pada kadar garam tinggi), bahkan beberapa mikroorganisme dapat tahan di dalam substrat dengan kadar garam sampai 30%,golongan ini bersifat halodurik.
7. Pengaruh mikroorganisme di sekitarnya
Kehidupan organisme di alam tidak dapat dipisahkan dari adanya organisme lain. Seperti halnya manusia tidak dapat hidup bila tidak ada tumbuhan atau hewan. Organisme-organisme di alam ini berada dalam suatu keseimbangan yang disebut keseimbangan biologis.
B. Faktor kimia
Mengubah permeabilitas membran sitoplasma sehingga lalu lintas zat-zat yang keluar masuk sel mikroorganisme menjadi kacau.
Oksidasi,beberapa oksidator kuat dapat mengoksidasi unsur sel tertentu sehingga fungsi unsur terganggu. Misal, mengoksidasi suatu enzim.
Terjadinya ikatan kimia, ion-ion logam tertentu dapat megikatkan diri pada beberapa enzim. Sehigga fungsi enzim terganngu.
Memblokir beberapa reaksi kimia,misal preparat zulfat memblokir sintesa folic acid di dalam sel mikroorganisme.
Hidrolisa, asam atau basa kuat dapat menghidrolisakan struktur sel hingga hancur.
Mengubah sifat koloidal protoplasma sehingga menggumpal dan selnya mati.
Faktor zat kimia yang mempengaruhi pertumbuhan:
�� Logam-logam berat                    �� Klor dan senyawa klor
�� Fenol dan senyawa-senyawa sejenis            �� Zulfonomida
�� Alkohol                             �� Detergen
�� Aldehit                             �� Zat pewarna
�� Yodium                             �� Peroksida
4.5 Media biak dan persyaratan bagi pertumbuhan
Untuk menumbuhkan dan mengembangbiakkan mikroorganisme diperlukan suatu substrat yang disebut media. Dikarenakan dengan media yang cocok, maka pertumbuhan mikroorganisme akan maksimal, subur dan cepat. Media biak (larutan biak) dapat di buat dari senyawa-senyawa tertentu.
Media biak dapat dibagi menjadi 3 macam yaitu:
Media biak sintetik : media ini dibuat dari senyawa – senyawa kimia.
Media biak kompleks, media ini dibuat dari senyawa yang mengandung ektrak ragi, otolitas ragi, pepton dan ekstrak daging.
Media biak padat, media ini dibuat dari larutan biak cair kemudian ditambahkan bahan pemadat yang memberi konsistensi seperti selai pada larutan air.
Salah satu syarat untuk pertumbuhan mikroorganisme adalah kadar ion hidrogen yang ada dilingkungannya. Perubahan kadar yang kecil saja sudah mampu menimbulkan pengaruh yang besar. Alasan inilah yang amat penting untuk menggunakan nilai pH awal yang optimum dan mempertahankannya sepanjang pertumbuhan. Organisme hidup paling baik pada pH 7. selain kadar ion hydrogen, dibutuhkan juga karbondioksida dan kadar air, suhu dan tekanan osmatik. Pertumbuhan mikroorganisme tergantung dari bahan-bahan makanan.
Pada dasarnya larutan biak sekurang-kurangnya harus mengandung sebagai berikut :
Kebutuhan nutrien pokok. Diantaranya karbon, oksigen, hidrogen, nitrogen, belerang, fosfat, kalium, magnesium dan besi.
. Sumber-sumber karbon dan energi.
Zat-zat pelengkap, yaitu suplemen yang termasuk komponen dasar dan yang oleh beberapa mikroorganisme tidak dapat disintesis dari komponen-komponen sederhana.
Dalam upaya mendukung pertumbuhan mikroorganisme secara berkelanjutan dapat dilakukan dengan menyediakan media yang dikayakan. Kondisi pengkayaan adalah kondisi dimana organisme dapat tetap tumbuh dengan kehadiran saingan dengan menetapkan sejumlah faktor (sumber energi, sumber karbon dan sumber nitrogen akseptor hidrogen dan atmosfir gas, cahaya, suhu, pH dan selanjutnya) dapat ditetapkan kondisi lingkungan tertentu dan dapat ditanamkan populasi campur yang terdapat dalam tanah atau dalam lumpur. Bahan-bahan penanaman yang menguntungkan ialah bahan-bahan yang berasal dari tempat dimana telah terjadi “pengkayaan alamiah” seperti : mikroorganisme pengolah CO dalam limbah air pabrik gas, pengolah hemoglobin dalam limbah pajagalan dan oksidator hidrokarbon di ladang minyak bumi dan bak minyak.
Untuk mikroorganisme yang sangat terspesialisasi harus dibuat kondisi pengkayaan yang sangat selektif. Medium mineral yang bebas nitrogen terikat dan tanpa cahaya merupakan medium yang amat selektif untuk sianobakteri yang memfiksasi nitrogen. Bila larutan medium yang sama dilengkapi dengan suatu sumber energi atau sumber energi dan sumber karbon maka pada keadaan gelap dan pada kondisi aerob dan tumbuh Azotobacter dan kalau Biak Murni.
Untuk menumbuhkan dan mengembang-biakan mikroorganisme, diperlukan suatu substrat yang disebut media. Sedang media itu sendiri sebelum dipergunakan harus dalam keadaan steril, artinya tidak ditumbuhi oleh mikroorganisme lain yang tidak diharapkan. Susunan bahan, baik berbentuk bahan alami (seperti tauge, kentang, daging, telur, wortel), ataupun bahan buatan (berbentuk senyawa kimia organik ataupun anorganik) yang dipergunakan untuk pertumbuhan dan perkembangbiakan mikroorganisme dinamakan media. Secara garis besar media dibedakan atas :
1. Media hidup
Media hidup umumnya dipakai dalam laboratorium virology untuk pembiakan berbagai virus, sedangkan dalam bakterologi hanya beberapa
jenis kuman tertentu saja dan terutama hewan percobaan.
2. Media mati
Berdasarkan konsentrasinya
Media padat, terbagi media agar miring, agar deep dan agar sebar. Media ini umumnya dipergunakan untuk bakteri, ragi, jamur.
. Media cair, jika media tidak ditambahkan zat pemadat, biasanya media cair dipergunakan untuk pembiakan mikroalga, bakteri dan ragi.
Media semi padat atau semi cair, jika penambahan zat pemadat hanya 50% atau kurang dari yang seharusnya. Ini umumnya diperlukan untuk pertumbuhan mikroorganisme yang banyak memerlukan kandungan air dan hidup anaerobik atau fakultatif.
Berdasarkan komposisi atau susunan bahannya Sesuai dengan fungsi fisiologis dari masing-masing komponen ( unsure hara ) yang terdapat di dalam media, maka susunan media pada semua jenis mempunyai kesamaan isi, yaitu:
a. Kandungan air
b. Kandungan nitrogen, baik berasal dari protein, asam amino, dan senyawa lain yang mengandung nitrogen.
c. Kandungan sumber energi / unsur C, baik yang berasal dari karbohidrat, lemak,protein, ataupun senyawa-senyawa lain.
d. Faktor pertumbuhan, umumnya vitamin dan asam amino.
Berdasarkan kepada persyaratan,susunan media dapat berbentuk:
a. Media alami, yaitu media yang disusun oleh bahan-bahan alami seperti kentang, tepung, daging, telur, ikan, umbi-umbian.
b. Media sintetis, yaitu media yang disusun oleh senyawa kimia seperti media untuk pertumbuhan dan perkembang-biakan bakteri clostridium.
c. Media semi sintetis, yaitu media yang tersusun oleh campuran bahanbahan alami dan bahan-bahan sintetis.
Berdasarkan sifat Penggunaan media bukan hanya untuk pertumbuhan dan perkembangbiakan mikroorganisme, tetapi juga untuk isolasi, seleksi,evaluasi, dan diferensiasi biakan yang didapatkan berdasarkan sifat-sifat media, yaitu:
Media umum, kalau media a dapat dipergunakan untuk pertumbuhan dan perkembangbiakan satu atau lebih kelompok mikroorganisme secara umum.
Media penyangga, kalau media dipergunakan dengan maksud “memberikan kesempatan” terhadap suatu jenis atau kelompok mikroorganisme untuk tumbuh dan berkembang lebih cepat dari jenis atau kelompok lainnya yang sama-sama berada dalam satu bahan.
Media selektif, adalah media yang hanya dapat ditumbuhi oleh satu atau lebih jenis mikroorganisme tertentu tetapi akan menghambat atau mematikan untuk jenis –jenis lainnya.
Media diferensial, adalah media yang dipergunakan untuk menumbuhkan mikroorganisme tertentu serta penemuan sifatsifatnya.
Media penguji, yaitu media yang digunakan untuk pengujian senyawa atau benda tertentu dengan bantuan mikroorganisme.
Media penghitungan, yaitu media yang digunakan untuk menghitungn jumlah mikroorganisme pada suatu bahan. Media ini dapat berbentuk media umum, media selektif ataupun media differensial dan penguji.
Agar mikroorganisme dapat tumbuh dan berkembang dengan baik di dalam media diperlukan persyaratan tertentu, yaitu:
Bahwa di dalam media harus terkandung semua unsur hara yang diperlukan untuk pertumbuhan dan perkembangbiakan mikroorganisme.
Bahwa media harus dalam keadaan steril.
4.6 Reproduksi Mikroorganisme sebagai Komponen Pertumbuhan Mikroorganisme
Pertumbuhan mikroorganisme ditentukan pula oleh kemampuan dalam mereproduksi sel. Perkembangbiakan mikroorganisme dapat terjadi secara aseksual (yang paling umum) dan secara seksual (terjadi pada beberapa individu saja). Pada bakteri misalnya, perkembang-biakan secara aseksual terjadi secara pembelahan biner, yaitu sel induk membelah menjadi dua selanak. Kemudian masing-masing sel anak akan membentuk dua sel anak lagi, dan seterusnya hingga makin membanyak. Selama sel membelah maka akan terjadi keselarasan replikasi DNA sehingga tiap-tiap sel anak akan menerima paling sedikit satu kopi (salinan) dari genom.
Perbanyakan sel dengan cara pembelahan ini, kecepatannya ditentukan oleh waktu generasi.Ada jenis yang mempunyai waktu generasi lambat atau lambat sekali. Ada pula yang waktu generasinya sangat singkat atau cepat.

Tabel 4.5 Waktu generasi mikroorganisme

Kelompok Jenis
Mikroorganisme             Waktu Generasi ( Jam )
Bakteri heterotrofik:
Bacillus megatarium                0,58
Escherichia coli                0,28
Rhizobium meliloti                1,80
Treponema pallidum                34,0
Bakteri fotosintetik:
Chloropseupdomonas                7,0
Ethylicum                    2,4
Rhodopseudomonas spheroids        5,0
Rhodospirillum rubrum
Ragi:
Saccharomyces cerevisiae             2,0
Bakteri memang mempunyai cara-cara perkembang-biakan aseksual yang unik kalau dibandingkan dengan mikroorganisme lainnya. Juga didalam kecepatan perbanyakan dan waktu generas, tetapi pembelahan sel mikroorganisme tidak saja terjadi hanya secara biner sajamungkin pula dapat berbentuk multiple perkuncupan.
Ragi, seperti ragi untuk membuat kue atau roti Saccharomyces cerevisiae pembelahan ada yang seperti bakteri (dari satu sel menjadi dua dst.) tetapi ada pula yang membentuk kuncup, dimana tiap kuncup akan membesar seperti induknya. Kemudian tumbuh kuncup baru dan seterusnya sehingga akhirnya membentuk semacam mata rantai.
Virus tumbuh dan berkembang-biak di dalan sel hidup jasad lain, perbanyakan individunya terjadi secara pembelahan atau replikasi DNA(gambar 47) Perkembang-biakan aseksual dapat juga terjadi secara fragmentasi, yaitu pemotongan serat atau hifa atau filamen. Misal yang terjadi pada jamur atau mikroalge. Filamen yang terpotong menjadi beberapa bagian, tiap potongannya akan tumbuh dan berkembang pula seperti induknya. Perkembang-biakan aseksual yang paling umum lagi adalah melalui spora. Spora yang dapat diumpamakan seperti biji tanaman tinggi, dihasilkan dalam berbagai bentuk mikroorganisme. Untuk bakteri, spora terbentuk didalam sel, sehingga dinamakan endospora. Sedang untuk jamur misalnya, spora terbentuk diluar tubuh jasadnya, sehingga dinamakan
eksospora. Kalau spora jatuh ke tempat yang lembab maka ia akan berkecambah dan tumbuh menjadi individu baru. Perkembang biakan secara seksual, umumnya terjadi pada jamur dan mikro alga serta secara terbatas pada bacteria, dapat terjadi secara :
1. Oogami, kalau sel betina berbentuk telur.
2. Secara anisogami, kalau sel betina lebih besar dari sel jantan.
3. Isogami, kalau sel jantan dan sel betina mempunyai bentuk yang sama.
Hasil perkawinan (fertilisasi) akan membentuk zigot (sel betina atau sel telur yang telah di buahi oleh sel jantan atau sel sperma), yang kemudian zigot akan berkecambah membentuk individu baru setelah mengalami pembelahan. Rangkaian kehidupan mikroorganisme yang dimulai dari spora, spora berkecambah, membentuk massa sel ataupun tubuh buah kemudian menghasilkan alat perkembang biakan kembali, disebut siklus atau daur hidup. Pada bacteria siklus hidup kurang jelas rangkaianya, berbeda pada jamur dan mikro alga. Pada jamur kompos (Agaricus bisporus), yaitu jenis jamur yang sudah dibudidayakan dan bernilai ekonomi dengan nama mushroom atau champignon, siklus hidupnya sangat jelas mulai dari spora yang berkecambah, membentuk massa hifa atau misellia, membentuk tubuh buah stadia awal sampai membentuk tubuh buah yang nyata terlihat. Juga pada alga hijau (Chlamydomonas) jenis alag yang banyak kita temukan pada bak aquarium ataupun pada kolam ikan, serta pada protozoa (Trypanosoma gambiense) penyebab penyakit tidur yang ditularkan melalui lalat tsese.
Di dalam siklus hidup, tahapan yang terjadi sejak spora berkecambah sampai menghasilkan kembali alat perkembang biakan, akan di lalui tingkat perkembang biakan secara seksual ataupun aseksual sesuai dengan sifat mikroorganisme. Faktor – faktor yang mempengaruhi, khususnya factor lingkungan abiotik seperti :
1. Kelengkapan unsur yang terdapat di dalam media    5. Cahaya
2. pH media                            6. Sirkulasi oksigens
3. Kadar air media                        7. Kelembaban
4. Temperatur
A. Bakteri
Pada umumnya bakteri berkembang biak secara aseksual atau vegetatif yaitu dengan cara membelah diri. Pada kondisi lingkungan yang memungkinkan, bakteri akan membelah diri dengan cepat. Pembelahan terjadi setiap 15-20 menit. Sehingga dalam waktu kurang lebih 7-8 jam bakteri sudah menjadi jutaan.
Proses pembelahan diri dibagi menjadi tiga fase,yaitu:
1.    Fase pertama, dimana sitoplasma terbelah oleh sekat yang tumbuh tegak lurus pada arah memanjang.
2.    Sekat tersebut diukuti oleh suatu dinding melintang. Dinding melintang ini tidak selalu merupakan penyekat yang sempurna,ditengah-tengah sering ketinggalan suatu lubang kecil, dimana protoplasma kedua sel baru masih tetap berhubung-hubungan. Hubungan protoplasma ini disebut plasmodesmida.
3.    Fase terakhir ialah terpisahnya kedua sel. Ada bakteri yang segera berpisah, yaitu yang satu terlepas sama sekali dari pada yang lain, setelah dinding melintang menyekat secara sempurna. Bakteri yang semacam ini merupakan koloni yang merata, jika dipiara pada medium yang padat. Sebaliknya, bakteri-bakteri yang dindingnya lebih kokoh tetap bergandeng-gandengan setelah pembelahan. Bakteri macam ini merupakan koloni yang kasar permukaannya.

B. Jamur
Perkembangbiakan jamur ditemukan dua macam,yaitu: aseksul dan seksual.
1. Secara aseksual
Dengan cara membelah diri atau bertunas, dilakukan oleh jamur yang bersel satu. Tunas yang dihasilkan disebut blastospora.
Dengan fragmentasi, berupa potongan misselium atau hifa.
Dengan pembentukan konidia,yaitu ujung-ujung hifa tertentu membagi-bagi diri membentuk :
�� bentuk-bentuk yang bulat ( konidiospora ) atau serupa telur (oidiospora)
�� bentuk empat persegi panjang ( artispora )
�� spora yang berdinding tebal,disebut klamidospora
2. Secara seksual
Perkembangbiakan secara seksual memerlukan 2 jenis jamur yang cocok. Untuk kecocokan ini diberikan tanda + dan – Proses perkawinannya terdiri atas persatuan 2 protoplas ( plasmogami ) kemudian diikuti persatuan inti ( kariogami ). Jamur ada yang menghasilkan alat kelamin jantan saja atau hanya alat kelamin betina saja,sehingga jamur yang seperti ini disebut jamur berumah dua (diesi).jamur yang dapat menghasilkan alat kelamin jantan dan alat kelamin betina disebut hermaprodit atu disebut berumah satu (monoesi).
Alat kelamin disebut gametangium.gametangium menghasilkan se l kelamin jantan disebut anteridium, sedangkan gametangium yang menghasilkan sel kelamin betina disebut oogonium. Gamet jantan dan betina yang tidak dapat dibedakan disebut isogamet. Jika jelas berbeda disebut anisogamet yang berciri besar dan kecil,atau heterogamet (bila beda jenis kelamin). Pada jamur tingkat rendah dijumpai gamet – gamet yang dapat bergerak (planogamet). Sel telur adalah suatu aplanogamet, sedangkan anterozoida adalah planogamet.
Cara bersatunya dua sel yang berlainan jenis dapat diklasifikasikan sebagai berikut :
a. Persatuan planogamet
Merupakan persatuan 2 gamet yang dapat bergerak, untuk itu disebut planogametogami. Kalau persatuan terjadi antara dua gamet yang berbeda ukuran, atau planogamet yang satu dapat bergerak sedang yang lain tidak, maka persatuan itu disebut anisogametogami.
b. Kontak antara gametangium
Pada spesies jamur yang tidak menghasilkan sel kelamin, plasmogami dapat terjadi langsung antara dua gametangium yang kompatiabel, sedang masing-masing gametangium selama plasmogami terjadi tidak mengalami perubahan. Lewat suatu lubang atau saluran kecil yang terjadi antara kedua gametangium yang mengadakan kontak. Mengalirlah inti atau inti-inti dari anteridium ke oogonium.
c. Persatuan antara gametangium dengan gametangiogami
Pada gametangiogami terjadi perpindahan seluruh isi anteridium ke oogonium,dalam hal ini ada dua cara : Pertama, antara anteridium dan oogonium terbentuk lubang atau saluran, sehingga seluruh protoplast dari anteridium pindah ke oogonium lewat lubang atau saluran tersebut. Kedua, gametangium luluh menjadi satu tubuh baru.
1) Spermatisasi
Beberapa jamur tingkat tinggi menghasilkan semacam konidia kecil berinti satu disebut spermatia.spermatia dapat dibawa angin, air, serangga yang berguna untuk membuahi gametangium betina.
2) Somatogami
Pada jamur tingkat tinggi tertentu tidak terdapat alat kelamin maupun sel kelamin dan persatuan antara protoplas antara dua jenis yang kompatibel dapat berlangsung dari setiap hifa dari jenis yang satu dengan hifa jenis yang lainnya. Somatogami terdiri dari peristiwa.
a) Terjadinya inti diploid dalam miselium yang heterokariotik
b) Pembiakan inti diploid, bersama-sama dengan pembiakan inti-inti haploid dalam miselium yang heterokariotik
c) Terjadi pemisahan inti haploid hingga terkurung dalam sel yang homo kariotik, kemudian tumbuh menjadi miselium baru.
d) Terjadinya meiosis dan mitosis yang mengakibatkan adanya inti- inti haploid lagi.

SEJARAH PERKEMBANGAN MIKROBIOLOGI


OLEH: DR.H.M. AGUS KRISNO BUDIYANTO, M.KES

DOSEN PENDIDIKAN BIOLOGI UMM

SEJARAH PERKEMBANGAN MIKROBIOLOGI
1.1. Pendahuluan
Mikrobiologi merupakan suatu istilah luas yang berarti studi tentang organisme hidup yang terlalu kecil untuk dapat dilihat dengan mata terlanjang. Dalam bahasa Yunani “Mikrobiologi” diartikan mikros yang berarti kecil, bios yang artinya hidup dan logos yang artinya kata atau ilmu. Dalam konteks pembagian ilmu modern, Mikrobiologi mencakup studi tentang bakteri (bakteriologi), jamur (mikologi), dan virus (virologi).
Di Indonesia sendiri, dunia mikrobiologi saat ini telah berkembang pesat dan mempunyai perhimpunan sendiri yakni Perhimpunan Mikrobiologi Indonesia (PERMI) adalah suatu organisasi profesi ilmiah dalam bidang mikrobiologi yang beranggotakan ilmuwan, pakar dan teknisi yang mempunyai keahlian dalam ilmu pengetahuan dan teknologi bidang mikrobiologi serta ilmuwan lain yang berminat dalam bidang mikrobiologi.
Mikrobiologi adalah suatu kajian tentang mikroorganisme. Mikroorganisme itu sangat kecil, biasanya bersel tunggal, secara individual tidak Dapat dilihat dengan mata telanjang. Mikroorganisme hanya dapat dilihat dengan bantuan mikroskop. Walaupun beberapa pengaruh mikroorganisme telah diketahui dan juga telah dimanfaatkan selama ribuan tahun, tetapi baru 300 tahun yang lalu organisme- organisme mikroskopik terlihat dan dipelajari pertama kali.
Antonie Van Leeuwenhoek (1632-1723) ialah orang yang pertama kali mengetahui adanya dunia mikroorganisme itu. Pada tahun 1675 Antonie, membuat mikroskop dengan kualitas lensa yang cukup baik, sehingga dia bisa mengamati mikroorganisme yang terdapat pada air hujan yang menggenang dan air jambangan bunga. Dari air hujan yang menggenang di kubangan-kubangan dan dari air jambangan bunga, ia peroleh beraneka hewan bersel satu dengan menggunakan mikroskop buatan yang diperbesar hingga 300 kali. Ia tertarik dengan banyaknya benda-benda kecil yang dapat bergerak yang tidak terlihat dengan mata biasa. Ia menyebut benda-benda bergerak tadi dengan ‘animalcule’ yang menurutnya merupakan hewan-hewan yang sangat kecil. Selain itu ia juga menemukan adanya Hewan bersel satu ini kemudian diberi nama Infusoria atau “hewan tuangan”. Penemuan ini membuatnya lebih antusias dalam mengamati benda-benda tadi dengan lebih meningkatkan mikroskopnya. Hal ini dilakukan dengan menumbuk lebih banyak lensa dan memasangnya di lempengan perak. Akhirnya Leewenhoek membuat 250 mikroskop yang mampu memperbesar 200- 300 kali. Leewenhoek mencatat dengan teliti hasil pengamatannya tersebut dan mengirimkannya ke British Royal Society. Salah satu isi suratnya yang pertama pada tanggal 7 September 1674 ia menggambarkan adanya hewan yang sangat kecil yang sekarang dikenal dengan protozoa. Antara tahun 1963-1723 ia menulis lebih dari 300 surat yang melaporkan berbagai hasil pengamatannya. Salah satu diantaranya adalah bentuk batang, coccus maupun spiral yang sekarang dikenal dengan bakteri. Pentingnya penemuan tersebut tidak dihargai pada saat itu terlebih lagi Penemuan Leewenhoek tentang animalcules menjadi perdebatan darimana asal animalcules tersebut. Ada dua pendapat yang muncul, satu mengatakan animalcules ada karena proses pembusukan tanaman atau hewan, melalui fermentasi misalnya. Pendapat ini mendukung terori yang mengatakan bahwa Makhluk hidup berasal dari benda mati melalui proses abiogenesis. Konsep ini dikenal dengan ganaratio spotanea. Pendapat ini mengatakan bahwa animalcules tadi berasal dari animalcules sebelumnya seperti halnya organismea tingkat tinggi. Pendapat atau teori ini disebut dengan biogenesis. Mikrobiologi tidak berkembang sampai perdebatan tersebut terselesaikan dengan dibuktikannya kebenaran teori biogenesis. Pembuktian ini memerlukan berbagai macam eksperimen yang nampaknya sederhana dan perlu waktu lebih dari 100 tahun.. Baru setelah hampir 200 tahun berikutnya, seorang ahli Perancis, Louis Pasteur, Louis Pasteur (1822 – 1895) seorang ahli kimia yang menaruh perhatian pada mikroorganisme, Oleh karena itu ia tertarik untuk meneliti peran mikroba dalam industri anggur dan pembuatan alkohol dalam mempelajari proses fermentasi dan menunjukkan bahwa mikroorganismelah penyebab rasa asam yang tidak dikehendaki pada beberapa jenis anggur. Kenyataannya, ada satu jenis
mikroorganisme yang membantu pembuatan anggur, namun ada organisme lain yang menyebabkan rusaknya minuman anggur. Setelah gagasan ini diterima studi tentang organisme dengan proses metabolisme menjadi ilmu yang penting.
Antara tahun 1674 sampai 1683 ia terus menerus mengadakan hubungan
dengan lembaga “ Royal Society” di Inggris.Ia melaporkan hal-hal yang diamatinya dengan miskroskop itu kepada lembaga tersebut. Laporan-laporan itu disertai dengan gambar-gambar mikroorganisme yang beraneka ragam. Atas kecermatanketelitian pengamatan leeuwenhock nyata sekali pada gambar–gambar tersebut.Kemudian ia membuat sketsa bakteri dengan bentuk bola (kokus), silindris atau bentuk batang (basillus), spiral (spirilum). Akan tetapi arti penemuan leeuwcnhock tidak dihiraukan sebelum tahun 1800, ketika orang belum menyadari benar bahwa mikroorganisme adalah penyebab banyak penyakit atau menyebabkan perubahan kimia pada pahan – bahan disekitar kita yang tidak terhitung banyaknya. Dalam sejarah mikrobiologi, Leeuwenhoek dapat dipandang sebagai peletak dasar utama atau bapak mikrobiologi.
1.2 Pembahasan
Mikrobiologi mencangkup pengetahuan tentang virus (virologi), pengetahuan tentang bakteri (bakteriologi), pengetahuan tetang hewan bersel satu (Protozoologi), pengetahuan tentang jamur (Mikologi), terutama yang meliputi jamur-jamur rendah seperti Phycomycetes, dan juga Ascomycetes, serta Deuteromycetes. Lebih dari satu abad yang lalu Louis Pasteur dan beberapa rekannya meyakinkan profesi medis bahwa sebenarnya organisme yang kecil inilah yang menyebabkan penyakit. Informasi yang diperoleh dari mikrobiologi membawa kemajuan besar untuk mengawasi banyaknya penyakit menular. Disamping itu mikroorganisme telah digunakan untuk mempelajari berbagai proses biokimia yang diketahui terjadi pada bentuk kehidupan yang lebih tinggi. Jadi banyak fakta tentang metabolisme manusia yang diketahui oleh sekarang, mula-mula diketahui terjadi pada   bukan hanya studi tentang mikroorganisme penyebab penyakit, tetapi merupakan studi tentang semua aktifitas hayati mikroorganisme.
1.2 Perkembangan Studi Mikroorganisme
Studi pengaruh dan pemanfaatan mikroorganisme, sebenarnya sudah berlangsung selama ribuan tahun, tetapi baru 300 tahun yang lalu mikroorganisme dipelajari dan dikaji lebih mendalam.
1.2.1 Antonie Van Leeuwenhoek (1632-1723)
Antony van Leeuwenhoek (1632 – 1723) sebenarnya bukan peneliti atau ilmuwan yang profesional. Profesi sebenarnya adalah sebagai ‘wine terster’ di kota Delf, Belanda. Ia biasa menggunakan kaca pembesar untuk mengamati serat-serat pada kain. Sebenarnya ia bukan orang pertama dalam penggunaan mikroskop, tetapi rasa ingin tahunya yang besar terhadap alam semesta menjadikannya salah seorang penemu mikrobiologi. Mikroorganisme untuk pertama kali diketahui oleh Leeuwenhoek dengan menggunakan karya ciptaannya yaitu mikroskop. Dengan sarana ini ia mengamati mikroorganisme dalam air hujan, air laut, bahan pengorekan dari sela-sela gigi, campuran yang sedang berfermentasi dan berbagai bahan lainnya, kemudian ia menamakan hewan temuan pertamanya ini “hewan kecil” (animalcule).
1.2..2 Teori Generatio Spontanea (Abiogenesis) dan Biogenesis
Teori Generatio Spontanea ini dikembangkan untuk menjelaskan adanya lalat pada daging yang membusuk. Tikus pada makanan ternak yang terurai, dan ular yang membusuk pada air yang menggenang. Pada abad XIX, muncul isu ilmu pengetahuaan mengenai asal–usul kehidupan. Setelah ditemukannya suatu dunia organisme yang tidak tampak dengan mata telanjang membangun minat terhadap perbedaan mengenai asal–usul kehidupan yaitu dari manakah asal jasad – jasad renik ini muncul. Oleh karena itu muncullah pertentangan dari para ahli dan ilmuwan, sehingga melahirkan dua aliran atau tokoh yaitu aliran Non Vital dan aliran Vital. Pada zaman Aristoteles lebih dari 2000 tahun yang lalu (300 sebelum isa almasih) muncul suatu pendapat, bahwa kehidupan berasal dari bahan atau benda mati yang mengalami penghancuran. Konsepsi ini dikenal sebagai teori sebagai spontan atau abiogenesis (abio,”tidak hidup”: genesis “asal”). Aristoteles berpendapat, bahwa organisme hidup (mahluk –mahluk kecil) terjadi daribenda mati. Banyak orang pada masa yang lalu tidak sependapat bahwa mikroorganisme menjelma melalui generasi spontan, tetapi tidak sedikit pula yang mendukung berlakunya generasi. Spontan bagi cacing, serangga,bahkan binatang seperti tikus dan katak.Ilmuwan-ilmuwan yang juga mengamati teori Generatio Spontanea antaralain:
1. Francesco Redi
Francesco Redi (1668), seorang fisikawan Italia merupakan orang pertama yang melakukan pembantahan teori generation spontania. Dia melakukan experimen dengan memasukkan daging ke dalam wadah yang ditutup dengan kain tipis yang berlubang halus untuk mencegah masuknyalalat, ia membuktikan bahwa belatung tidak terjadi secara mendadak pada daging yang membusuk. Lalatlah yang tertarik oleh daging yang membusuk, bertelur di atas kain tipis penutup wadah. Ketiadaan belatung yang tumbuh pada daging yang membusuk memberikan bukti yang menentukan untuk menentang perkembangan secara mendadak.. disamping itu dia melakukan serangkaian penelitian menggunakan daging segar yang telah dipanaskan terlebih dahulu. Redi memperhatikan bahwa ulat akan menjadi lalat dan lalat sela ia terdapat jauh dari sisa –sisa daging. Pada penelitiannya Redi menggunakan dua kerat daging segar yang diletakkan dalam dua wadah. Wadah yang satu ditutupi kain yang tembus udara dan yang satu tidak ditutupi. Setelah beberapa hari, pada daging tidak tertutup mulailah keluar belatungbelatung. Sementara itu pada daging yang tertutup tidak tumbuh belatung dari experimen itu maka Franscesco Redi menyimpulkan dan menunjukkan bahwa ulat yang ada dalam daging busuk adalah larva yang berasal dari telur lalat, bukan hasil dari generatio. Sehingga Tujuan dari penelitian Redi ini adalah untuk menjelaskan bahwa setiap makhluk hidup perlu asal–usul dimana ia berasal. Teori Abiogenesis juga ditentang pula oleh Lazzaro Spallinzani.
2. John Needham (1713-1781)
Needhan (1713-1781), adalah seorang pendeta bangsa Irlandia. Selama tahun 1745-1750 ia mengadakan eksperimen–eksperimen atau percobaan dengan daging yang direbus. Ia juga mengadakan eksperimen-eksperimen dengan berbagai rebusan padi-padian, dan lain sebagainya. Meskipun air rebusan tersebut disimpannya rapat-rapat dalam botol tertutup, namun timbulah mikroorganisme dengan kata lain menurutnya kehidupan dapat timbul dari benda mati. Pendapat ini lebih dikenal sebagai teori Abiogenesis. Kemudian air tersebut disimpannyarapat- rapat dalam botol tertutup, dan mengamati bahwa terdapat mikroorganisme pada awal percobaan. Sehingga menyimpul bahwa jasad- jasad (mikroorganisme) tersebut terjadi secara spontan dari daging. Dengan kata lain bahwa adanya animalcules berasal dari air kaldu hasil. perebusan daging namun teori necdhan ini lalu dipatahkan oleh Lazzaro Spallanzani.
3. Lazzaro Spallanzani (1729-1799)
Lazzaro Spallinzani (1729 – 1799), seorang biologiwan italia, dalam usahanya untuk membantah dan membuktikan bahwa konsepsi abiogenesis yang dikemukakan oleh Aristoteles dan Nedham itu tidak benar. Dia mengatakan bahwa perebusan dan kemudian penutupan botol–botol berisi air rebusan yang dilakukan needham itu tidak sempurna. Kemudian Spallanzani melakukan percobaan dengan merebus kaldu daging selama 1 jam dan menempatkannya pada toples yang disegel/ditutup rapat dan hasilnya menunjukkan tidak ditemukannya mikroorganisme dalam kaldu tersebut, karena dengan menutup botol tidak memungkinkan masuknya udara (oksigen) yang sangat dibutuhkan bagi kehidupan mikroorganisme. Jadi ekperimen ini menentang teori abiogenesis. Hal ini juga tetap tidak dapat menyakinkan Needham bahwa mikroorganisme tidaklah muncul karena generasi spontan. Lazzaro menyimpulkan bahwa faktor yang menentukan kehidupan adalah potensi faktor biologis. Namun Needham bersikeras dan membantah bahwa pemanasan yang oleh Spallanzani menyebabkan bahan makan makhluk hidup rusak, dan udara atau oksigen itu hilang karena dikeluarkan dari toples selagi percobaan pemanasan sehingga generasi spontan mikroorganisme tidak dapat hidup dan muncul.
4. Franz Shchulze (1815-1873) dan Theodor Shcwann (1810-1882).
Hampir 100 tahun setelah percobaan Needham ada 2 peneliti Franz Shchulze (1815-1873) dan Theodor Shcwann (1810-1882). Mereka berdua yang mencoba memecahkan kontroversi tentang peran udara. Pada tahun 1836, Franz Schulze dengan experimennya melewatkan larutan asam kuat ke dalam tabung tertutup yang berisi daging yang telah dimasak. Tahun 1837, Theodor Schwann mengalirkan udara melalui pipa yang dipanai ke dalam tabung tertutup yang bersisi kaldu yang dipanasi dan membara ke dalam labu berisi kaldu daging yang dididihkan berjam-jam lamanya. Maka baik Schultze maupun Schwann tidak menemukan mikroorganisme di dalam kaldunya sebab mikroba telah mati oleh adanya asam kuat maupun oleh panas. Tetapi para pendukung teori generatio spontanea berpendapat bahwa adanya asam dan panas akan mengubah udara sehingga tidak mendukung pertumbuhan mikroba Namun tetap saja hal ini belum meyakinkan mereka yang menyokong konsepsi abiogenesis terhadap eksperimen kedua sarjana tersebut. Mereka mengatakan bahwa udara yang lewat asam ataupun pipa panas itu telah mengalami perubahan sedemikian rupa, sehingga tidak memungkinkan dan tidak mendukung timbulnya kehidupan makhlukmakhluk baru. Sampai akhirnya tahun 1954 peneliti menyelesaikan perdebatan tersebut dengan melakukan percobaan menggunakan tabung tertutup berisi kaldu yang telah dipanaskan. Ke dalam tabung tersebut dimasukkan pipa yang pada sebagiannya diisi dengan kapas dan ujungnya dibiarkan terbuka. Dengan demikian mikroba akan tersaring dan udara tetap bisa masuk. Dengan tidak ditemukannya mikroba dalam kaldu daging tersebut membuktikan bahwa teori generatio spontanea adalah salah.
5. H. Scroeder dan Th. Von Dusch
H. Scroeder dan Th. Von Dusch (1854) melakukan percobaan yang lebih meyakinkan dan memantapkan. Penelitian Schwan yaitu dengan melewatkan udara melalui tabung berisi kapas yang steril menuju ke dalam labu berisi kaldu yang sebelumnya dipanaskan. Dengan cara ini mikroorganisme disaring keluar dari udara oleh serat-serat kapas dan dengan demikian dicegah masuk ke dalam labu maka ia tidak mendapatkan mikroorganisme (jasad renik) baru yang tumbuh di dalam kaldu tersebut. Dengan demikian tumbanglah teori abiogenesis.
6. Louis Pasteur dan John Tyndall
Louis Pasteur (1822-1895), seorang ahli kimia yang mendapat pengakuan nasional tidak lama setelah memulai karirnya ketika ia menemukan rumus bangun asam tertarat. Kemudian Pasteur tertarik pada industri minuman anggur dan perubahan-perubahan yang terjadi selama proses fermentasi. Melalui penelitian fermentasi gula, Pasteur mengatakan bahwa faktor lingkungan sangat penting bagi kehidupan
mikroorganisme. Hal ini menandakan berakhirnya pertentangan konflik nonvital dan vital.
Berdasarkan hasil-hasil percobaan ilmuwan yang juga seorang biologiwan bernama Louis Pasteur ini, dapat meyakinkan khalayak, bahwa tidak ada kehidupan baru yang dapat timbul dari benda mati, maka muncullah teori “Biogenesis” yaitu “Omne vivum ex ovo, omne ovum ex vivo” yang berarti “semua kehidupan itu berasal dari telur, dan semua telur itu berasal dari sesuatu yang hidup”. Louis Pasteur sebenarnya seorang sarjana kimia, akan tetapi berkat jasa-jasanya dalam bidang mikrobiologi demikian banyaknya, sehingga ia disebut seorang pelopor mikrobiologi.
@Pernyataan Louis Pasteur tersebut, belum memberi jawaban atas pertanyaan “darimana asal bakteri?”. Sesungguhnya, bahwa pertanyaan ini hingga sekarang belum terjawab, pertanyaan ini identik dengan pertanyaan“darimana asal kehidupan”. Jawaban atas semua ini bergantung pada pandangan hidup seseorang, dan dengan demikian terletak diluar bidang ilmu pengetahuan atau science. Seorang vitalist akan menjawab berlainan dengan paham gereja yang berlandaskan materialisme, sehingga akan menyebabkan timbulnya pemisahan antara ilmu dengan urusan agama dimana paham vital yang mengarah pada peranan adanya organisme dan paham non vital yang peranannya mengarah pada faktor diluar organisme. Pada masa pasteur terdapat salah seorang penyokong yang penuh dedikasi terhadap generasi spontan (Abiogenesis) pasteur ialah Felix Arhimede Pautcht, seorang naturalis Perancis. Dalam tahun 1859 ia menerbitkan laporan panjang lebar untuk membuktikan kejadiannya, tetapi ia tidak memperhitungkan sifat Louis Pasteur yang cerdik, keras kepala dan tak kenal lelah.Karena merasa jengkel akan logika dan data Pouchet, maka Louis Pasteur didalam tahun 1865 melakukan percobaan untuk lebih meyakinkan dan untuk mengakhiri pertikaian itu untuk selama-selamanya. Louis Pasteur mempersiapkan larutan nutrien (kaldu) didalam labu yang dilengkapi dengan lubang atau pipa panjang dan sempit berbentuk “leher angsa”. Pasteur sendiri meyakini bahwa sebuah sel pasti berasal dari sel lainnya. Dalam percobaannya menggunakan tabung berleher angsa, Pasteur memanaskan dengan merebus larutan nutrien (kaldu) itu dan udara tanpa perlakuan dan tanpa disaring kemudian dibiarkan lewat keluar masuk. Setelah sekian lama, ternyata tidak ada mikroorganisme yang tumbuh dalam larutan itu. Pada prinsipnya udara mampu masuk ke dalam tabung, namun partikel-partikel debu yang mengandung mikroorganisme tidak mencapai larutan nutrien karena partikel debu akan menempel dan mengendap dalam bagian lengkungan tabung “leher angsa” yang berbentuk huruf V dan aliran udara demikian berkurangnya sehingga partikel-partikel debu yang mengandung mikroorganisme tidak terbawa masuk ke dalam labu. Dalam hal ini mikroba beserta debu akan mengendap pada bagian tabung yang berbentu U sehingga tidak akan dapat mencapai kaldu. Ia juga membawa tabung tersebut ke pegunungan Pyrenes dan Alpen. Pasteur menemukan bahwa mikroorganime terbawa debu oleh udara dan ia menyimpilkan bahwa semakin bersih/murni udara yang masuk ke dalam bejana, semakin sedikit kontaminasi yang terjadi. Dari hasil experiment tersebut Pada tanggal 7 April 1864 ia mengatakan bahwa: For I have kept them and am still keeping from them, that one thing that is above the power of man to make; I have kept from them, the germ that float in the air, I have kept them from life.
Salah satu argumen klasik untuk menantang buiogenesis adalh bahwa panasang digunakan untuk mensterilkan udara atau bahan juga dianggap merusak ‘vital force’. Mereka yang mendukung teori abiogenesis berpendapat bahwa tanpa adanya kekuatan vital force tersebut mikroorganisma tidka dapat muncul serta spontan. Untuk merespon argumen tersebut John Tyndall mengatakan udara dapat dengan mudah dibebaskan dari mikroorganisma dengan cara melakukan percobaab dengan meletakkan tabung reaksi berisi kaldu steril ke dalam kotak tertutup. Udara dari luar masuk ke dalam kotak melalui pipa yang sudah dibengkokkan membentuk dasar U seperti spiral. Terbukti bahwa meskipun udara luar dapat masuk ke dalam kotak yang berisi tabung dengan kaldu di dalamnya, namun tidak ditemukan adanya mikroba. Hasil percobaan Pasteur dan Tyndall memacu diterimanya konsep biogenesis.
Di antara bukti-bukti yang paling penting ialah hasil percobaan John Tyndall pada awal tahun 1870-an, denan menciptakan sebuah kotak bebas debu, dan menempatkan tabung-tabung berisi kaldu steril didalamnya. Selama udara dalam kotak bebas dari debu maka selama itu pula kaldu akan mengendap dan tertahan pada tabung berleher angsa yang menuju ke dalam kotak, sehingga dari percobaan John Tyndall terbukti bahwa mikroorganisme terbawa oleh partikel-partikel debu.
Disamping percobaan abiogenesis Pasteur juga tertarik pada industry minuman anggur dan perubahan-perubahan yang terjadi selama proses
fermentasi. Pada zaman dahulu, orang memperbaiki mutu produk-produk fermentasinya dengan cara mencoba-coba, tanpa menyadari bahwa mutu sesungguhnya bergantung kepada penyediaan atau perbaikan kondisi bagi pertumbuhan mikroorganisme pelaku fermentasi tersebut. Barulah setelah Pasteur menelaah peranan mikroorganisme dalam proses fermentasi pada pembuatan anggur maka orang menjadi mengerti bahwa mikroorganisme itulah yang menyebabkan terjadinya fermentasi.
Dimana proses fermentasi terjadi karena enzim yakni zat yang dihasilkan sel hidup yang menyebabkan berlangsungnya reaksi-reaksi kimiawi tertentu. Untuk masa berpuluh-puluh tahun tetap dianut adalah tentang proses fermentasi. Proses tersebut adalah suatu proses kimia.Karena jasad pemrosesannya tidak nampak. Serta kalaupun kemudian adanya pertumbuhan jasad (misal ragi) pada permukaan larutan dianggap sebagai akibat proses fermentasi. Tetapi berkat penelitian tiga orang ahli, antara lain Pasteur pada tahun 1830, dapat diketahui dan dipastikan bahwa proses fermentasi adalah proses biologis dimana mikroorganisme (ragi) yang berperan. Ia setelah membuktikan ketidakbenaran teori spontan, jadi memastikan bahwa mikroorganisme merupakan penyebab fermentasi, ia siap membantu para pembuat minuman anggur dan bir Perancis, yang acapkali menghadapi kesukaran untuk menghasilkan produk bermutu tinggi. Setelah memeriksa banyak kelompok minuman anggur, maka dia menemukan berbagai macam mikroorganisme. Pasteur menetapkan bahwa dengan seleksi yang tepat terhadap mikroorganisme yang bersangkutan, maka dapat dipastikan bahwa akan diperoleh hasil yang baik dan merata secara konsisten. Untuk mencapai hal ini, maka mikroorganisme yang sudah ada dalam sari buah harus dihilangkan dan fermentasi yang baru dimulai dengan biakan, yaitu suatu pertumbuhan mikroorganisme yang diambil dari tong anggur yang dinilai baik. Pasteur menyarankan agar menghilangkan tipe-tipe mikroorganisme yang tidak diinginkan dengan pemanasan-yang tidak sampai merusaka aroma sari buah tetapi cukup tinggi untuk membunuh mikroorganisme. Ia mendapati bahwa perlakuan dengan suhu 62,80C selama setengah jam cukuplah untuk mencapai hal tersebut. Kini proses ini, dinamai pasteurisasi, digunakan secara meluas pada industri fermentasi, tetapi yang paling kita kenal ialah yang dimanfaatkan di industri hasil susu, untuk membunuh jasad-jasad renik penyebab penyakit yang terdapat dalam susu dan produk-produk susu. Bahkan sebelum Pasteur berhasil membuktikan bahwa bakteri menjadi sebab beberapa penyakit, banyak pengamatan yang cermat menentang keras adanya teori nutfah penyakit. Dalam tahun 1546 Francastoro dari Verona (1483-1553) menyatakan bahwa penyakit dapat disebabkan oleh jasad renik yang terlalu kecil untuk dapat dilihat yang dipindahkan (ditularkan) dari seseorang ke seseorang lain. Pada
tahun 1762 von Plnciz dari Vienna tidak hanya mengemukakan bahwa sesungguhnya makhluk hiduplah yang menjadi penyebab penyakit, tetapi juga berpendapat bahwa berbagai jasad renik menimbulkan bermacammacam penyakit pula. Konsepsi parasitisme, yakni adanya organism yang hidup pada atau didalam organisme lain dengan mengambil nutrient dari padanya, tersebar luas dalam tahun 1700-an. Dikarenakan keberhasilan Pasteur dalam memecahkan masalah fermentasi maka pemerintah Perancis memintanya untuk meneliti pebrine, penyakit pada ulat sutra yang menghancurkan industri sutra yang penting di Negara tersebut. Ternyata masalah itu rumit, dan selama bertahun mereka mencari-cari pemecahannya dengan susah payah. Akan tetapi, pada akhirnya ia berhasil mengisolasi jasad renik (suatu protozoa) penyebabnya. Pasteur bahkan meningkat lebih lanjut dan menganjurkan kepada para petani ulat sutra agar mereka menyeleksi ulat–ulat / baru yang sehat dan bebas penyakit untuk menghindari penyakit itu. Kemudian pasteur (1877) menangani masalah antraks. Penyakit pada sapi, domba, dan terkadang manusia. Setelah mengamati penyebab penyakit itu dari darah hewan yang mati karena penyakit tersebut. Maka ia menumbuhkannya dalam labu –labu di laboratorium. Walaupun sejak jaman dulu sudah banyak ahli yang mempunyai keyakinan bahwa penyebab penyakit dapat berpindah tempat dan menyebar dari satu orang ke orang lain, baik melalui udara, melalui air. Ataupun melalui pembawa lainnya. Baru oleh Fracastorius (1478-1553) dasar-dasar yang meyakinkan tentang perpindahan dan penyebaran jasad penyebab penyakit, mulai diungkapkan. Serta lebih kurang satu setengah abad kemudian oleh Kircher (1602-1680) cara-cara yang pasti tentang penularan, penyebaran dan perpindahan jasad penyebab penyakit lebihterperinci. Uraian, bahasan, dan batasan Kircher inilah yang kemudian dapat mengungkapkan berbagai jenis penyebab penyakit serta cara penyebaran dan penularannya, seperti yang kemudian dilanjutkan oleh Panum (1820-1885) ahli kedokteran Denmark untuk penyakit campak, Snow (1813-1858) dan Budd (1811-1880) tentang epidemi kolera Asia, dan sabagainya. Pada periode ini terjadinya gejala pembengkakan pada luka yang dibiarkan,kemudian diketahui, disebabkan oleh adanya pertumbuhan mikroorganisme pengubah darah menjadi nanah yang kemudia banyak hidup di sekitar dan didalam luka.
Menurut Pasteur, fermentasi asam laktat yang tidak ingin terjadi dari kontaminasi dengan bakteri berbentuk batang. Produksi etanol terjadi karena aktivitas sel khamir. Menurut penelitian yang dilakukan Pasteur bahwa jenis bakteri mampu mengubah gula menjadi produk akhir. Jadi suatu bakteri menyebabkan pembentukan asam laktat dari gula. Jenis lain membentuk asam butirat dan seterusnya. Pasteur menemukan bahwa proses fermentasi terjadi tanpa adanya udara. Ialah yang pertama menggunakan istilah aerob (aerobic) dan anaerob (anaerobic) yang artinya proses yang memerlukan udara dan proses yang yang tidak mungkin berlangsung jika tidak ada udara.
7. Robert Koch (1843-1910)
Di Jerman, Robert Koch (1843 – 1910) seorang profesional di bidang kesehatan mendapat hadiah mikroskop dari istrinya untuk hadiah ulang
tahunnya yang ke-28.. Koch adalah seorang dokter yang tenang dan sangat teliti, ia terkadang melalaikan praktek dokternya untuk mengejar ilmu baru yang sangat memukau yaitu bakteriologi. Selanjutnya ia mulai meneliti dunia mikroorganisma yang sudah dilihat oleh Pasteur. Baik Pasteur maupun Koch menjadi rival bersama yang sama-sama ingin mengetahui penyebab penyakit anthrax yang sangat merugikan peternak  sapi dan domba di Eropa. Koch akhirnya menemukan dari darah domba yang telah mati karena anthrax. Dengan sering meninggalkan prkateknya sebagai dokter, Koch membuktikan bahwa bakteri tersebut penyebab anthrax dengan cara memisahkan bakteri untuk batang tersebut dari bakteri lain yang ada kemudian menginjeksikannya ke dalam tikus yang sehat. Tikus selanjutnya menunjukkan perkembangan menuju anthrax dan bakteri yang diisolasi dari tikus menunjukkan kesamaan bakteri yang berasal dari domba yang sakit sebelumnya. Pada 1876, setelah meneliti selama 6 tahun Koch mengumumkan bahwa dia telah menemukan bakteri penyebab anthrax. Ia juga menyarankan bahwa ternak sakit supaya dibunuh dan dibakar atau dikubur yang dalam, setelah ia mengetahui bahwa spora yang dihasilkan oleh bakteri dapat bertahan hidup selama berbulan-bulan di daerah peternakan. Dengan penemuan anthraxnya Koch merupakan orang pertama yang membuktikan mikroba tertentu merupakan agen penyakit tertentu. Selanjutnya Koch dan kawan-kawan menemukan bakteri penyebab tuberculosis dan cholera. Perkembangan teknik laboratorium untuk mempelajari mikroorganisma. Koch dan anggotanya banyak memberi kontribusi mengenai teknik-teknik tersebut. Diantaranya adalah prosedur pengecatan bakteri untuk pengamatan dengan mikroskop cahaya dan juga koch menemukan bakteri yang menimbulkan tuberkolosis dan kolera. Khusus mengenai Robert Koch yang sampai sekarang namanya tetap dikenang dan dihargai karena jasajasanya besarnya di bidang mikrobiologi kedokteran dan kemanusiaan. Berkat penelitian Koch ini maka ihwal dan penyebab penyakit TBC, tifus, difteri, kolera dan gonorhu serta antraks, dapat terungkap dan dipisahkan secara murni. Yang paling penting untuk diketahui adalah Postulat Koch yang menjadi dasar bagi seorang ahli untuk mencari, menemukan dan mengetahui jasad penyebab suatu penyakit didalam suatu wabah yang sedang berkecamuk. Tahap-tahap kerja Postulat tersebut mempunyai 4 dalil, yaitu :
Bahwa mikroorganisme yang disangka penyebab harus selalu didapatkan pada semua penderita penyakit dan tidak didapatkan pada bukan penderita atau yang masih sehat.
Bahwa mikroorganisme penyebab harus dapat dibiakkan secara murni di dalam media tanpa kehadiran bagian/jaringan jasad yang tadinya dikenai.
Bahwa biakan jasad yg sudah dibiakkan, bila diinokulasikan (disuntikkan) kepada hewan percobaan, akan menimbulkan gejala penyakit yg sama
Bahwa biakan jasad yang sudah diinokulasikan. Dapat diisolasi/dipisahkan kembali serta kalau kemudian dibiakkan akan mempunyai bentuk yang sama seperti asal.
Dalam perkembangan berikutnya, nama-nama seperti Ehrlich (1854- 1915), Von Behring dan Kitasato (1890), Metchnikoff (1883), Loeffer (1884) Park (1894) dan banyak nama-nama ahli di bidang mikrobiologi, merupakan nama yang ditulis dengan tinta emas di dalam sejarah perkembangan mikrobiologi. Seperti secara khusus untuk bidang mikroorganisme penyakit di Amerika Serikat oleh Rush (1813), Webster (1843), Spencer (1851), Welch (1894), McCoy (1910) dalam bidang penyakit sipilis, pes, kolera, tifus dan difteri. Virus misalnya, sudah sejak Pasteur dan Koch melakukan penelitian, masalahnya sudah ada dan di usahakan untuk diketahuinya. Tetapi baru ketika diumumkan hasil penelitian Iwanowski (1892) sarjana mikroorganisme Rusia, meneliti penyebab penyakit aneh pada daun tembakau (yang dikenal dengan nama TMV/tobacco mosaic virus) Dimitri Ivanovski menunjukkan bahwa agen yang menyebabkan penyakit mosaik pada tembakau dapat ditularkan melalui ekstrak tanaman yang sakit. Ekstrak terebut disaring dengan filter yang ditemukan oleh kawan-kawan Pasteur dimana filter tersebut diketahui dapat menyaring bakteri.
Penelitian selanjutnya menunjukkan bahwa agen tersebut mempunyai ukuran yang jauh lebih kecil dari bakteri. Selanjutnya nama-nama ahli seperti Buist (1887), Negri (1903),Ricketts (1906), Woodruff dan Goodpasture (1930), Stanley (1937) banyak berkecimpung didalam penelitian dan
pengembangan virus. Pada tahun 1900 seorang ahli bedah bernama Walter reed (1851-1902) dengan menggunakan manusia sebagai volunteer membuktikan bahwa virus tersebut dibawa oleh nyamuk tertentu lainnya membawa protozoa penyebab malaria. Salah satu cara penting untuk mencegah penyakit tersebut adalah mengurus air yang tergenang yang digunakan nyamuk untuk tempat berkembang biak. Pada massa periode modern ditandai dengan diraihnya beberapa hadiah Nobel oleh para ahli mikrobiologi yang bergerak dalam bidang pengobatan dan kedokteran, seperti oleh Domagk (1939) untuk penemuan obat-obat sulfa sebagai obat ampuh untuk infeksi bakteri, oleh Flemming, Florey & Chain (1945) untuk penemuan antibiotika penisilin, oleh Waksman (1952) untuk penemuan antibiotik sterptomisin, oleh Stanley (1946) untuk penemuan protein-virus secara murni, dan oleh Enders, Welle Beadle (1954) untuk penemuan virus poliomyelitis sehingga pembuatan vaksin polio memungkinkan untuk dilakukan. Metode pencegahan dan pengobatan yang telah dikemukakan untuk memberantas penyakit karena mikroorganisme mencakup imunisasi (misalnya vaksinasi), antisepsis (cara-cara untuk meniadakan atau mengurangi kemungkinan infeksi), kemoterapi (perawatan pasien dengan bahan kimia), dan cara-cara kesehatan masyarakat (misalnya, pemurnian air, pembuangan limbah, dan pengawetan makanan). Pasteur melanjutkan penemuannya mengenai penyebab dan pencegahan penyakit-penyakit menular. Sekitar 1880 ia mengisolasi bakteri yang menjadi penyebab kolera ayam dan menumbuhkannya pada biakan murni. Untuk menunjukkan bahwa benar-benar dia telah mengisolasi bakteri penyebab penyakit tersebut maka ia menggunakan teknik-teknik dasar yang dikemukakan Koch.
Pada tahun 1880, Pasteur dengan menggunakan teknik dari Konch untuk mengisolasi dan membiakkan bakteri yang menyebabkan kolera pada ayam. Untuk membuktikan penemuannya, Pasteur membuat demonstrasi dihadapan publik tentang percobaannya yang telah dilakukan berulang kali di laboratorium. Dia menginjeksikan biakkan bakteri kolera pada ayam sehat dan menunggunya sampai ayam tersebut menunjukkan gejala penyakit. Akan tetapi hasilnya membuat Pasteur mendapat malu karena ayamnya tetap hidup dan sehat. Pasteur kemudian mengevaluasi langkah-langkah yang menyebabkan demonstrasi tersebut gagal. Dia menemukan bahwa secara kebetulan dia menggunakan biakan tua seperti yang telah dilakukan sebelumnya, dan satu kelompok adalah ayam yang tidak pernah di inokulasi. Selanjutnya kedua kelompok ayam tersebut diinjeksi dengan biakan segar. Hasilnya, kelompok ayam yang kedua mati sedang kelompok ayam yang pertama tetap sehat. Pertama hal ini membuatnya bingung, tetapi Pasteur segera menemukan jawabannya. Pasteur menemukan bahwa, bakteri jika dibiarkan tumbuh menjadi biakan tua menjadi avirulen yaitu kehilangan virulensinya atau kemampuan untuk menyebabkan penyakit. Tetapi bakteri avirulen ini masih dapat menstimulasikan sesuatu dalam tubuh host dan pada infeksi berikutnya manjadi imun atau tahan terhadap penyakit. Pasteur selanjutnya menerapkan prinsip imunisasi untuk mencegah anthrax. Pasteur menyebut bakteri yang telah avirulen tersebut engan vaccin dari bahasa latin vaccayang artinya sapi dan imunisasi dengan biakan tersebut dikenal dengan vaksinasi (istilah yang diturunkan dari bahasa Latin vacca yang berarti “sapi”) dan imunisasi dengan biakan bakteri diatenuasi disebutnya vaksinasi. Dengan demikian Pasteur telah menghormati Edward Jenner (1749- 1823). Dengan vaksinasi tersebut Pasteur mengenali atau mengetahui hasil kerja sebelumnya yang dilakukan oleh Edward Jenner (1749 – 1823) yang telah sukses memfaksinasikan para pekerjanya di peternakan yang telah terkena copox dari ternak sapinya tetapi tidak pernah berkembang menjadi serius. Jenner menduga bahwa karena terbiasa menghadapi cowpox akan mencegahnya dari serangan smallpox. Untuk membuktikan hipotesisnya ini Jener menginokulasi James Phipps pertama dengan materi yang menyebabkan cowpox yang diambil dari luka, kemudian dengan agen smallpox. Anak laki-laki tersebut tidak menunjukkan gejala smallpox. Nama Pasteur selanjutnya dikenal dimana-mana dan oleh banyak orang dianggap sebagai peneliti tentang mikroorganisme yang ajaib. Untuk itu ia diminta membuat vaksin pencegah hidrofobia atau rabies, penyakit yang ditularkan ke manusia melalui gigitan anjing, kucing, atau binatang yang terinfeksi lainnya. Pasteur adalah seorang ahli kimia, bukan dokter dan Pasteur tidak biasa memperlakukan manusia. Disamping kenyataan bahwa penyebab penyakit rabies adalah belum diketahui, tetapi Pasteur mempunyai keyakinan yang kuat bahwa itu adalah mikroorganisma. Ia dapat membuat kelinci terkena penyakit setelah diinokulasi dengan saliva anjing. Selanjutnya Pasteur dan asistennya mengambil otak dan tulang belakang kelinci tersebut dan mengeingkannya dan membuatnya menjadi larutan. Anjing yang diinokulasi dengan campuran tersebut dapat terhindar dari rabies. Akan tetapi vaksinasi terhadap anjing sangat berbeda dengan manusia. Pada bulan Juli 1885, seorang anak laki-laki bernama Joseph Meister digigit oleh serigala dan keluarganya membujuk Pasteur untuk menginokulasi anak tersebut. Kekawatiran Pasteur dan orang-orang menjadi berkurang setelah anak laki-laki tersebut tidak mati. Selanjutnya Pasteur menjadi terkenal dan memperoleh banyak dana yang kemudian digunakan untuk mendirikan Institute Pasteur di Paris yang sangat terkenal.
Dalam waktu yang bersamaan. Elie Metchnikoff (1845-1916) yang bekerja di laboratorium Pasteur, mengamati bahwa leukosit, semacam sel dalam darah manusia, dapat memakan bakteri penyebab penyakit yang ada dalam tubuh. Pelindung terhadap infeksi ini dinamakan fagosit atau “pemakan sel” dan prosesnya disebut fagositosis. Dalam pengertian umum, kata sepsis berarti infeksi, antisepsis berkenaan dengan cara-cara pemberantasan atau pencegahan infeksi. Telah dikemukakan mengenai diperkenalkannya oleh Semmelweis tentang caracara aseptik selama kelahiran agar mengurangi terjadinya demam nifas karena mikroorganisme. Dalam tahun 1860-an seorang ahli bedah Inggris Joseph Lister (1827-1912) mencari cara-cara menjauhkan mikroorganisme dari luka dan torehan (insisi) yang dibuat para ahli bedah karena kematian akibat sebab-sebab   tinggi sekali. Dalam tahun 1864, misalnya, Lister mencatat 45 persen dari pasiennya sendiri meninggal setelah pembedahan. Desinfektan pada waktu itu belum dikenal, tetapi asam karbolat (fenol). Sudah diketahui membunuh bakteri,maka Lister menggunakan larutan encer asam tersebut untuk merendam perlengkapan bedah dan menyemprot ruang bedah.Luka dan torehan yang dilindungi dengan cara ini jarang terkena infeksi dan dengan cepat menjadi sembuh. Demikian gemilangnya keberhasilannya itu sehingga tekniknya dengan cepat diterima oleh para ahli bedah lain, dan praktek antisepsis inilah yang mendasari prinsip teknik asesptik masa kini yang digunakan untuk mencegah masuknya mikroorganisme kedalam luka atau insisi. Sekarang banyak sekali macam zat kimia, seperti alkohol dan larutan iodium, dan teknik fisik, seperti misalnya saringan udara, dan lampu ultraviolet germisidal(dapat membunuh kuman), yang digunakan menurunkan jumlah mikroorganisme di tempat –tempat seperti kamar bedah dan kamar anak- anak untuk bayi yang prematur. Pada peralihan abad ini telaah tentang mikrobiologi bercabang menjadi dua arah berbeda tetapi saling melengkapi; yang pertama berkenaan dengan penelitian lebih lanjut untuk menemukan kegunaan mikroorganisme dan yang kedua berkaitan dengan telaah terperinci ciri-ciri hayati jasad renik. Jasad-jasad renik ini acapkali diteliti untuk memperoleh informasi mengenai organisme lain yang tidak mudah diperoleh melalui percobaan-percobaan langsung pada organism tersebut. Penelitian ini dengan jasad renik telah menghasilkan banyak sumbangan yang luar biasa bagi biologi, biokimia dan kedokteran. Mikrobiologi yang merupakan bagian dari bidang biologi, tersusun oleh banyak disiplin (sub bidang). Pembagian disiplin ini tergantung kepada arah atau orientasinya, apakah terhadap taksonomi (susunan dan pengelompokan mikroorganisme), terhadap habitat (tempat hidup dan perkembangan mikroorganisme), terhadap problema (permasalahan yang ada atau ditimbulkan akibat mikroorganisme), sehingga sedikitnya akan ada 21 disiplin/sub bidang mikrobiologi yang dikenal sesuai keberadaannya. Berdasarkan kepada disiplin didalam bidang mikrobiologi, akan nampak jelas kaitan ilmu tersebut sebagai ilmu dasar dan ilmu terapan. Sebagai ilmu dasar karena di dalamnya tercakup pembahasan permasalahan yang berhubungan dengan bentuk, sifat, perkembangbiakan, penyebaran dan lingkungan yang mempengaruhinya. Sedang sebagai ilmu terapan, karena secara langsung jasad-jasad yang terdapat di dalam dapat berperan, baik di bidang yang menguntungkan seperti proses pembuatan dan peningkatan nilai gizi-nutrisi dan organileptik bahan makanan, industri farmasi, industri-kimia, bidang pertanian dan sebagainya. Juga secara langsung peranan jasad-jasad sebagai penyebab penyakit pada tanaman, hewan dan manusia, serta sebagai jasad penghasil toksin (racun) yang membahayakan. Bahkan peranan mikroorganisme di dalam lingkungan hidup, yang saat ini mulai dikembangkan adalah:
Sebagai jasad yang secara langsung ataupun tidak langsung mempengaruhi lingkungan
Juga sebagai jasad yang secara langsung ataupun tidak langsung dipengaruhi oleh lingkungan,
Sehubungan dengan hal tersebut di atas, maka pengembangan penggunaan mikroorganisme sebagai jasad parameter-alami (indikator–alami) terhadap perubahan didalam lingkungan, mulai banyak digunakan, khususnya akibat adanya pencemaran domestik (dari rumah tangga) ataupun non-domestik (dari pabrik, industri, pertanian dan sebagainya).
Mengkaji sejarah perkembangan mikrobiologi sangat menarik. Dimana dalam perjalanan sejarahnya tepatnya pada abad ke XIX, muncul isu tentang asal-usul  perbedaan pendapat dari para ilmuwan dan para peneliti pada zaman itu. Mereka tetap bersikeras dengan pendapat dan teori-teori masing-masing, sehingga secara tidak langsung, menyebabkan lahirnya dua paham aliran, yaitu paham aliran “non vital” atau Abiogenesis yang lebih dikenal dengan teori generatio spontania, dimana para ilmuwan yang mendukung teori ini berpendapat bahwa kehidupan itu asalnya atau kejadiannya secara tiba-tiba ada dengan sendirinya, dan mereka menganggap bahwa makhluk hidup (mikroorganisme) berasal dari benda mati. Adapun para ilmuwan penganut paham “non vital” diantaranya Antonie van Leeuwenhock yang diberi gelar sebagai bapak mikrobiologi atau orang pertama kali yang meletakkan dasar utama, Jhon Needlot dan John Nedham. Sedangkan para ilmuwan yang menganut paham aliran vital atau dikenal sebagai teori biogenesis adalah Lazzaro Spallazani, Schwan dan Schroder, mereka mengemukakan bahwa makhluk hidup ini berasal dari makhluk hidup yang sebelumnya. Mereka membantah dan menentang teori abiogenesis atau generasio spontanea dengan melakukan berbagai pembuktian dan percobaan. Dari sini terlihat bahwa timbulnya pertentangan-pertentangan dari para ilmuwan yang mengemukakan teori asal-usul kehidupan ialah salah satunya adanya factor pertentangan ahli-ahli ilmuwan dari paham gereja yang lebih berlandaskan atas unsur materialisme semata, dan adanya pemisahan ilmu pengetahuan dengan urusan agama yang terutama berhubungan dengan Tuhan sebagai sang Khalik yang menciptakan alam semesta. Sehingga teori-teori yang mengungkap tentang rahasia darimana sebenarnya asal-usul kehidupan itu berasal, sesungguhnya belum semuanya terbukti. Jawaban atas ini bergantung pada pandangan hidup seseorang, jika dikaitkan dengan segi spiritual yaitu aqidah Islam yaitu keyakinan dasar seseorang tentang adanya Allah SWT sebagai pencipta, dan pengatur seluruh alam semesta. Dialah yang maha kuasa atas segala sesuatunya, baik yang ada di langit dan di bumi semua berada di bawah pengawasan dan kekuasaan Allah SWT. Bukti-bukti tentang penciptaan alam semesta termasuk di dalamnya seluruh makhluk hidup di muka bumi, jelas tercantum dalam Al-Quran sebagaimana firman Allah yaitu:
“Dia-lah Allah, yang menjadikan segala yang ada di bumi untuk kamu dan dia berkehendak menciptakan langit, lalu dijadikan- Nya tujuh langit! Dan Dia Maha Mengetahui segala sesuatu “(QS Al – Baqarah : 29)
“Yang kepunyaan-Nyalah kerajaan langit dan bumi, dan dia tidak mempunyai anak, dan tidak ada sekutu bagi-Nya, dalam kekuasan-Nya. Dan Dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuranukurannya dengan serapi-rapinya sesuai dengan apa yang dikehendaki mudah bagi Allah” (QS Al-Furqon:2).
“Sesungguhnya keadaan-Nya apabila Dia menghendaki sesuatu hanyalah berkata kepadanya : “Jadilah! ”maka terjadilah ia. (QS Yaasiin :82).
“Dan (ingatlah), ketika Tuhanmu berfirman kepada para Malaikat: Sesungguhnya Aku akan menciptakan seorang manusia dari tanah liat kering (yang berasal) dari lumpur hitam yang diberi bentuk. Maka apabila Aku telah menyempurnakan kejadiannya, dan telah meniupkan kedalamnya ruh (ciptaan ) Ku, maka tunduklah kamu kepadanya dengan bersujud” (QS. Al-Hijr: 28-29 ).
“Hai manusia, jika kamu dalam keraguan tentang kebangkitan (dari kubur), maka (ketahuilah) sesungguhnya Kami telah menjadikan kamu dari tanah, kemudian dari setetes mani, kemudian dari segumpal darah, kemudian dari segumpal daging yang sempurna kejadiaanya dan yang tidak sempurna, agar Kami jelaskan kepada kamu dan Kami tetapkan dalam rahim, apa yang Kami kehendaki sampai waktu yang telah ditentukan, kemudian Kami keluarkan kamu sebagai bayi, kemudian (dengan berangsur-angsur) kamu sampailah kepada kedewasaan, dan diantara kamu ada yang diwafatkan dan (ada pula) diantara kamu yang dipanjangkan umurnya sampai pikun, supaya dia tidak mengetahui lagi sesuatupun yang dahulunya telah diketahuinya. Dan kamu lihat Bumi ini kering, kemudian apabila telah Kami turunkan air atasnya, hiduplah bumi itu dan suburlah dan menumbuhkan berbagai macam tumbuh-tumbuhan yang indah”. (Q.S. Al-Hajj: 5).
“Allah lah yang menciptakan langit dan bumi dan apa yang ada diantara keduanya dalam enam masa, kemudian Dia bersemayam di atas ‘Arsy. Tidak ada bagi kamu selain daripada-Nya seorang penolong pun dan tidak (pula) seorang pemberi syafaat. Maka apakah kamu tidak memperhatikan?” (Q.S. As-Sajadah: 4).
Dari penggalan bukti ayat-ayat Al-quran tersebut telah jelas bahwa kita sebagai orang yang beriman, yang yakin akan adanya sang Khalik harus percaya bahwa seluruh makhluk baik di langit dan di bumi, baik berukuran besar maupun kecil, bahkan sampai mikroorganisme (jasad renik) yang tidak dapat terlihat dengan mata telanjang adalah makhluk ciptaan Allah SWT, sehingga dengan mempelajari sejarah mikrobiologi. Secara tidak langsung pengetahuan tentang aqidah kitapun semakin bertambah. Sesungguhnya manusia hanyalah sedikit pengetahuannya, jika dibandingkan dengan ilmu Allah SWT yang maha luas dan tak terbatas.
1.3 Ringkasan
• Definisi mikrobiologi
Menurut bahasa mikrobiologi yang berasal dari bahasa yunani mikros yang berarti kecil, bios yang artinya hidup dan logos yang artinya ilmu. Dengan demikian dapat ditarik satu arti mikrobiologi merupakan suatu ilmu yang mempelajari tentang makhluk hidup yang berukuran kecil yang tidak dapat dilihat dengan kasap mata biasa serta memerlukan suatu benda untuk dapat melihatnya yang telah kita kenal dengan nama mikroskop yang mencakup bakteri, miko (jamur), viro (virus).
• Perkebangan Mikrobiologi
Mikrobiologi mulai ada dan dipelajari sekitar 300 tahun yang lalu, dimulai dari beberapa ilmuwan yang melakukan berbagai eksperimen untuk mengetahui keberadaan mikroba
• Antonie Van Leeuwenhock (1632-1723)
Tahun 1675 Antonie membuat mikroskop dengan kualitas lensa yang cukup baik, dengan menumpuk lebih banyak lensa sehingga dia bisa mengamati mikroorganisme yang terdapat pada air hujan yang menggenang dan air jambangan bunga, juga dari air laut dan bahan pengorekan gigi. Ia menyebut benda-benda bergerak tadi dengan ‘animalcule’. Selain itu ia juga menemukan adanya hewan bersel satu ini kemudian diberi nama Infusoria atau “hewan tuangan”. Maka muncul pendapat bahwa makhluk hidup berasal dari benda mati ”biogenesis”. Konsep ini dikenal dengan ganaratio spotanea. Pendapat ini mengatakan bahwa animalcules tadi berasal dari animalcules sebelumnya.
@Louis Pasteur (1822 – 1895)
Mempelajari proses fermentasi dan menunjukkan bahwa mikroorganismelah penyebab rasa asam yang tidak dikehendaki pada beberapa jenis anggur. Ia membuat sketsa bakteri dengan bentuk bola (kokus), silindris atau bentuk batang (basillus), spiral (spirilum). Melalui penelitian fermentasi gula, Pasteur mengatakan bahwa faktor lingkungan sangat penting bagi kehidupan mikroorganisme. Louis Pasteur dapat meyakinkan khalayak, bahwa tidak ada kehidupan baru yang dapat timbul dari benda mati, maka muncullah teori “Biogenesis” yaitu “Omne vivum ex ovo, omne ovum ex vivo” yang berarti “semua kehidupan itu berasal dari telur, dan semua telur itu berasal dari sesuatu yang hidup”. Untuk membunuh mikroorganisme. Pasteur mendapati bahwa perlakuan dengan suhu 62,80C selama setengah jam cukuplah untuk mencapai hal tersebut. Kini proses ini, dinamai pasteurisasi.
@Aristoteles
Pada zaman Aristoteles lebih dari 2000 tahun yang lalu (300 sebelum isa almasih) muncul suatu pendapat, bahwa kehidupan berasal dari bahan atau benda mati yang mengalami penghancuran. Teori ini disebut juga dengan Teori Generateo Spontanea. Merupakan suatu teori yang berpendapat bahwa makhuk hidup terjadi secara spontan.
@ Francesco Redi (1668)
Melakukan suatu penelitian menggunakan daging yang diletakan dalam suatu wadah dan diberi lubang kemudian ditutup kain.. Percobaan yang kedua ia menggunakan daging yang telah dipanaskan, dalam satu wadah ditutup dan satu wadah lain tidak diberi tutup. Pada daging tidak tertutup mulailah keluar belatung-belatung. Pada daging yang tertutup tidak tumbuh belatung dari experimen itu maka Franscesco Redi menyimpulkan dan menunjukkan bahwa ulat yang ada dalam daging busuk adalah larva yang berasal dari telur lalat, bukan hasil dari generatio.
@John Needham (1713 – 1781)
John Needhem mengadakan eksperimen dengan daging yang direbus juga berbagai rebusan padi-padian, dan lain sebagainya. Meskipun air rebusan tersebut disimpannya rapat-rapat dalam botol tertutup, namun timbulah mikroorganisme, dengan kata lain menurutnya kehidupan dapat timbul dari benda mati. Pendapat ini lebih dikenal sebagai teori Abiogenesis. menyimpul bahwa jasad (mikroorganisme) tersebut terjadi secara spontan dari daging.
@Lazzaro Spallanzani (1729 – 1799)
Spallanzani melakukan percobaan dengan merebus kaldu daging selama 1 jam,dan menempatkannya pada toples yang disegel/ditutup rapat dan hasilnya menunjukkan tidak ditemukannya mikroorganisme dalam kaldu tersebut, karena dengan menutup botol tidak memungkinkan masuknya udara (oksigen) yang sangat dibutuhkan bagi kehidupan mikroorganisme dan ini menentang teori abiogenesis.
@Franz Shchulze (1815 – 1873) dan Theodor Shcwann (1810 – 1882)
Franz Schulze experimennya melewatkan larutan asam kuat ke dalam tabung tertutup yang berisi daging yang telah dimasak. Theodor Schwann mengalirkan udara melalui pipa yang dipanai ke dalam tabung tertutup yang bersisi kaldu yang dipanasi dan membara ke dalam labu berisi kaldu daging yang dididihkan berjamjam lamanya. Mereka berpendapat bahwa sebab mikroba telah mati oleh adanya asam kuat maupun oleh panas.
@H. Scroeder dan Th. Von Dusch (1854)
Penelitian Schwan yaitu dengan melewatkan udara melalui tabung berisi kapas yang steril menuju ke dalam labu berisi kaldu yang sebelumnya dipanaskan. Dengan cara ini mikroorganisme disaring keluar dari udara oleh serat-serat kapas dan dengan demikian dicegah masuk ke dalam labu maka ia tidak mendapatkan mikroorganisme (jasad renik) baru yang tumbuh di dalam kaldu tersebut. Hal ini menyebabkan tumbangnya teori abiogenesis.
@Robert Koch (1843-1910)
Koch membuktikan bahwa bakteri tersebut penyebab anthrax dengan cara memisahkan bakteri untuk batang tersebut dari bakteri lain yang ada kemudian menginjeksikannya ke dalam tikus yang sehat. Koch mengumumkan bahwa dia telah menemukan bakteri penyebab TBC, tifus, difteri, kolera dan gonorhu serta antraks. Seiring dengan perkembangan mikrobiologi, terdapat peranan mikroorganisme dalam proses fermentasi pada pembuatan anggur. Dimana proses fermentasi terjadi karena enzim yakni zat yang dihasilkan sel hidup yang menyebabkan berlangsungnya reaksi-reaksi kimiawi tertentu, proses biologis dimana mikroorganisme (ragi) yang berperan.

MORFOLOGI DAN ANATOMI MIKROORGANISME


Planet Bumi kita ini dihuni oleh jutaan jenis mahluk hidup. Di antara jutaan jenis makhluk hidup ini ada yang terlihat oleh mata dan ada yang tak terlihat oleh mata. Mahluk hidup yang tidak dapat dilihat oleh mata tersebut berukuran amat kecil, disebut mikroorganisme. Untuk mengetahui atau mengamati mikroorganisme tersebut diperlukan alat bantu berupa alat pembesar, seperti loop, mikroskop biasa, dan mikroskop elektron. Mikroorganisme tersebut diantaranya adalah bakteri, jamur, dan virus. Secara umum, bakteri, jamur, dan virus mempunyai morfologi dan struktur anatomi yang berbeda. Di dalam kehidupannya beberapa mikroorganisme seperti bakteri, jamur, dan virus selalu dipengaruhi oleh lingkungannya dan untuk mempertahankan hidupnya mikroorganisme melakukan adaptasi dengan lingkungannya. Adaptasi ini dapat terjadi secara cepat serta bersifat sementara waktu dan dapat pula perubahan itu bersifat permanent sehingga mempengaruhi bentuk morfologi serta struktur anatomi dari bakteri, jamur, dan virus. Untuk mengidentifikasikan suatu mikroorganime dapat dilakukan dengan mengetahui morfologi dan struktur anatominya. Oleh karena itu kita perlu mengetahui bentuk morfologi dan struktur anatomi dari bakteri, jamur, dan virus.
Bentuk umum mikroorganisme terdiri dari satu sel (uniseluler) seperti umum didapatkan pada bacteria, ragi dan mikroalgae. Dapat pula berbentuk filamen atau serat, yaitu rangkaian terdiri atas 2 sel atau lebih yang berbentuk rantai, seperti yang umum didapatkan pada fungi dan mikroalgae.bentuk filament pada kenyataannya dapat berupa filament semu kalau hubungan antara satu sel dengan yang lainnya tidak nyata atau tidak ada. Filament benar apabila hubungan satu sel dengan lainnya terdapat terdapat hubungan jelas, baik hubungan secara morfologis maupun secara fisiologis. Bentuk lainnya adalah koloni, yaitu gabungan dua sel atau lebih di dalam satu ruangan. Bentuk jaringan semu, yaitu susunan serat membentuk jaringan seperti yang didapatkan pada fungi atau jamur, tetapi jaringan tersebut tidak berfungsi seperti layaknya jaringan yang dimiliki oleh tumbuhan ataupun hewan.
2.1. BAKTERI
1. Morfologi
Bentuk tubuh bakteri terpengaruh oleh keadaan medium dan oleh usia. Maka untuk membandingkan bentuk serta ukuran bakteri perlu diperhatikan bahwa kondisi bakteri itu harus sama, temperature dimana piaraan itu disimpan harus sama, penyinaran oleh sumber cahaya apapun harus sama, dan usia piaraan pun harus sama. Pada bakteri umumnya dikenal 3 macam bentuk yaitu kokus, basil, dan spiral.
a. Kokus
Kokus berasal dari kata coccus yang berarti bola, jadi kokus adalah bakteri yang bentuknya serupa bola-bola kecil. Beberapa kokus secara khas ada yang hidupnya sendiri-sendiri, ada yang berpasangan, atau rantai panjang bergantung. Caranya membelah diri dan kemudian melekat satu sama lain setelah pembelahan. Golongan kokus tidak sebanyak golongan basil. Kokus ada yang berdiameter 0,5 μm adapula yang diameternya sampai 2,5 μm. Pada bentuk kokus ada beberapa tipe morfologi diantaranya adalah:
1. Streptococcus
Kokus yang bergandeng-gandeng panjang serupa tali leher. Streptococcus dicirikan dengan sel-sel yang membelah menjadi dua kokus, yang pada pembelahan berikutnya tidak memisahkan diri, biasanya dengan meninggalkan dua kokkus yang melekat satu sama lain. Kokus yang senantiasa membelah dalam satu bidang namun tidak memisahkan diri membentuk rantai kokkus. Berdiameter 0,5 – 1,2 mikron
2. Sarcina
Kokus yang mengelompok serupa kubus,yaitu kokus membelah ke dalam tiga bidang yang tegak lurus satu sama lain membentuk paket kubus Berdiameter 4,0 – 4,5 mikron..
3. Staphylococcus
Kokus yang mengelompok merupakan suatu untaian yaitu kokus yang membelah dalam dua bidang yang membentuk dua gugusan yang tidak teratur bagaikan buah anggur. Berdimeter 0,8 – 1,0 mikron
4. Diplococcus
Kokus yang bergandengan dua-dua.
5. Tetracoccus
K okus yang mengelompokkan berempat.
b. Basil
Basil berasal dari kata bacillus yang artinya tongkat pendek atau batang kecil silindris. Bakteri yang berbentuk basil adalah bakteri yang bentuknya menyerupai tongkat pendek atau batang kecil silindris. Basil mempunyai bentuk dan ukuran yang beraneka ragam. Ujung beberapa basillus di antaranya ada yang berupa batang rokok dan ada yang berbentuk seperti cerutu. Basil juga sama seperti kokkus ada yang bergandeng-gandengan panjang yang disebut Streptobasil, ada yang bergandengan dua-dua yang disebut diplobasil dan ada yang terlepas satu sama lain. Ujung-ujung basil yang terlepasa satu sama lain itu tumpul, sedang ujung-ujung yang masih bergandengan itu tajam. Akan tetapi bila ditinjau dari segi pembelahan basil membelah hanya dalam satu bidang sehingga disebut sebagai sel tunggal. Beberapa basil ada yang bentuknya hampir sama dengan kokkus yaitu lebar dan panjangnya sama serta bentuknya lonjong sehingga disebut koko basil. Basil ada yang lebarnya antara 0,2 sampai 2,0 μ, sedang panjangnya ada yang satu sampai 15 μ.
c. Spiral
Spiral adalah bakteri yang bengkok atau tidak lurus atau berbentuk silinder. Bakteri yang berbentuk spiral itu tidak banyak terdapat. Spiral terbagi menjadi tiga bentuk diantaranya :
1. Vibrio atau bakteri koma
Batang melengkung seperti koma dan kadang membelit seperti huruf S. Mempunyai spiral yang pendek.
2. Spiril
Bentuknya seperti spiral atau seperti lilitan. Individu-individu sel yang tidak saling melekat.
3. Spirocheta
Bentuknya seperti spiral tetapi pergerakannya sangat aktif yang dimungkinkan karena adanya flagela yang membelit diketahui bentuk aslinya.
2. Anatomi bakteri
Struktur di luar dinding sel yang dapat dilihat pada mikroskop kekuatan tinggi dengan memfokuskan satu sel bakteri tunggal maka struktur yang dapat dilihat adalah:
a. Flagellum atau Flagella
Falgella merupakan bentuk seperti rambut dan teramat tipis mencuat menembus dinding sel dan bermula dari tubuh dasar suatu struktur granular tepat di bawah membran sel dalam sitoplasma, disebut flagellum (jamak,flagella). Flagellum terdiri dari tiga bagian: tubuh dasar, struktur seperti kait, dan sehelai filamen panjang di kluar dinding sel. Panjang flagellum biasanya beberapa kali lebih panjang dari selnya, namun diameternya jauh lebih kecil daripada diameter selnya, misalnya 10 sampai 20 nm. Flagel merupakan benang-benang protoplasma yang berpangkal pada titik tepat dibawah membran sel. Flagellum di buat dari subunit-subunit protein yang disebut untuk pergerakan (motilitas). Tidak semua bakteri punya flagellum, banyak spesies basillus dan spirilum memilikinya tapi flagellum jarang dijumpai pada kokus. Dari golongan kokus tidaklah banyak yang dapat bergerak (motil) karena sebagian golongan kokkus adalah bakteri non motil (tidak bergerak), kalaupun bakteri kokkus dapat bergerak biasanya hanya mempunyai satu sampai lima flagel saja. Sedangkan dari golongan spiril banyak dapat bergerak karena mempunyai flagel pada salah satu atau kedua ujung sel. Golongan basil yang dapat bergerak mempunyai flagel yang tersebar baik pada ujung-ujung maupun pada sisi.
Berdasarkan tempat kedudukan flagel tersebut bakteri dapat diklasifikasikan sebagai berikut :
1.    Jika flagel hanya satu dan flagel itu melekat pada ujung sel maka bakteri tersebut monotrik
2.    Jika flagel yang melekat pada salah satu ujung itu banyak maka bakteri tersebut disebut lofotrik
3.    Jika banyak flagel yang melekat pada kedua ujung sel maka bakteri tersebut disebut amfitrik.
4.    Jika flagel tersebar dari ujung sampai pada semua sisi bakteri maka bakteri tersebut disebut peritrik.
5.    Jika bakteri tersebut tidak memiliki flagel sama sekali maka bakteri tersebut disebut atrik
Akan tetapi flagela bukanlah satu-satunya sarana untuk bergerak bagi bakteri. Beberapa tipe memperlihatkan gerakan melata. Bakteri-bakteri ini melata di atas permukaan dengan gelombang-gelombang yang dihasilkan di dalam protoplasma. Banyak bakteri yang dapat berenang dalam cairan dengan kecepatan yang mengagumkan mengingat ukuranukurannya yang sangat kecil.
b. Pili atau Pilus dan Fimbria atau Fimbriae
Pili atau pilus ini banyak dimiliki oleh bakteri gram negatif. Apendiks ini yang disebut pilus (jamak, pili) merupakan organ tambahan berbentuk benang yan berukuran lebih pendek, lebih lurus, dan jauh lebih kecil daripada flagela. Pilus F berfungsi dalam pemindahan DNA pada konjugasi bakteri atau sebagai pintu gerbang bagi masuknya bahan genetik, selama berlangsungnya perkawinan antar bakteri. Susunan kimia phili terdiri sari protein yang dinamakan pilia, yaitu heteropolimer dari 18 asam amino yang bersifat antigenic. Beberapa pili berfungsi sebagai alat untuk melekat pada permukaan yaitu pada jaringan-jaringan hewan atau tumbuhan yang merupakan sumber nutriennya fimbria ini termasuk golongan yang disebut lektin.
c. Kapsul (lapisan lendir)
Kebanyakan bakteri mempunyai lapisan lendir yang menyelubungi dinding sel seluruhnya. Jika lendir ini cukup tebal maka bungkus itu disebut kapsul atau lapisan lendir terdiri atas hasil metabolisme yang disekresikan misalnya : karbohidrat dan pada species tertentu mengandung ungsur N atau P. Lendir ini bukan suatu bagian integral dari sel melainkan suatu hasil pertukaran zat. Kapsul bakteri sangat penting artinya baik bagi bakterinya maupun bagi organisme lain Bagi bakteri, kapsul merupakan penutup lindung dan juga berfungsi sebagai gudang cadangan makanan. Kapsul bakteri-bakteri penyebab penyakit tertentu menambah kemampuan bakteri tersebut untuk menginfeksi. Bakteri yang mempunyai kapsul itu termasuk bakteri ganas (virulent). Bila bakteri itu kehilangan kapsulnya sama sekali, maka ia dapat kehilangan virulensinya dan dengan demikian kehilangan kemampuannya menyebabkan infeksi.
Selain berfungsi sebagai penutup lindung atau melindungi sel dan lingkungan dan sebagai gudang cadangan makanan, kapsul juga berfungsi sebagai antigen membantu mencegah ragositosis dan sebagai hasil pembuangan dari sel.
d. Selongsong
Beberapa spesies bakteri, terutama dari lingkungan air tawar dan marin atau tempat yang kotor atau tempat pembuangan limbah terbungkus di dalam selongsong atau tubul. Selongsong tersebut terdiri dari senyawasenyawa logam tidak larut, seperti feri dan mangan okside yang mengendap di sekeliling sel sebagai produk dari kegiatan metaboliknya. Senyawasenyawa logam ini dibentuk oleh sel dari senyawa-senyawa besi dan mangan terlarut yang ada di lingkungan tersebut. Selongsong itu dapat meluas di sekitar banyak sel yang berjajar dari ujung ke ujung, sehingga memberikan kesan pertumbuhan seperti filamen. Sesungguhnya sel-sel yang terbungkus selongsong itu terdapat tunggal secara berkala mereka menyembul dari suatu ujung terbuka selongsongnya. Dan mengawali lagi proses baru pembentukan selongsong. Selongsong bukanlah suatu bagian yang amat diperlukan sel. Bakteri berselongsong membentuk suatu kelompok utama mikroorganisme. Mereka banyak dijumpai di dalam habitat air tawar yang kaya akan bahan organic, juga di aliran air kotor dan di tempat-tempat pembuangan limbah.
e. Tangkai
Spesies-spesies bakteri tertentu dicirikan oleh pembentukan suatu embel-embel setengah kaku yang memanjang dari sel yang disebut tangkai. Diameter dari apendiks itu lebih kecil daripada diameter sel yang menghasilkannya.Tangkai ini berfungsi untuk melekat pada permukaan padat.karena memiliki suatu substansi yang lengket pada ujung yang jauh dari sel. Bakteri bertangkai banyak di jumpai di lingkungan air tawar dan marin. Di lingkungan semacam itu kemampuan untuk melekat pada permukaan padat amatlah penting bagi pertumbuhan dan ketahanan hidupnya.
f. Dinding sel
Dinding sel terletak dibawah substansi ekstraseluler seperti kapsul atau lendir dan diluar membran sitoplasma terletak di dinding sel adalah suatu struktur yang amat kaku yang memberikan bentuk pada sel. Fungsi utama dari dinding sel adalah menyediakan komponen struktural yang kaku dan kuat yang dapat menahan tekanan osmosis yang tinggi disebabkan kimia tinggi ion organik dalam sel. Tanpa adanya dinding sel, dalam kondisi normal bakteri akan menyerap air dan pecah. Semua dinding sel, peptidoglikan atau meruein komponen ini memberi kekakuan yang diperlukan untuk mempertahankan keutuhan sel. Peptidoglikan adalah molekul yang sangat besar terbuat dari N-asetil muramat dikaitkan tetrapeptida yang terdiri atas empat asam amino,yaitu : L-alanin, D-alanin, asam D-glutamat, dan lisin atau asam diaminopimelat, untuk menyediakan tambahan yang diperlukan bagi jembatan molekul asam amino yang dihubungkan secara menyilang tetrapeptida yang terkait pada asam N-asitil muramat. Sebagian besar komponen struktur dinding sel berkaitan silang oleh ikatan kovalen, dan setiap substansi yang menghalangi pembentukan atau pengangkutan masing-masing komponen ke dinding sel akan melemahkan struktur dan mematikan sel.
Funsi dinding sel yang paling menonjol adalah : memberi perlindungan pada lapisan protoplasma, berperan dalam reproduksi sel, turut mengatur pertukaran zat dari dalam dan luar sel, mempengaruhi kegiatan metabolisme.
Bakteri dari komponen dan struktur dinding selnya dapat dibedakan menjadi dua kelompok yaitu bakteri gram-positif dan bakteri gram-negatif pengelompokan ini didasari teknik pewarnaan diferensial yang disebut pewarnaan gram.
1. Bakteri gram-positif
Bakteri gram-positif dinding selnya terdiri atas 60-100 persen peptodoglikan dan semua bakteri gram-positif memiliki polimer iurus asam N-asetil muramat dan N-asetil glukosamin dinding sel beberapa bakteri gram positif mengandung substansi asam teikoat yang dikaitkan pada asam muramat dari lapisan peptidoglikan. Asam teikoat ini berwujud dalam dua bentuk utama yaitu asam teikoat ribitoi dan asam teiokat gliserol fungsi dari asam teiokat adalah mengatur pembelahan sel normal. Apabila diberi pewarna gram menghasilkan warna ungu

2. Bakteri gram-negatif
Dinding sel gram negatif mengandung 10-20 % peptidoglikan, diluar lapisan peptidoglikan ada struktur membran yang tersusun dari protein fostolipida dan lipopolisakarida. Apabila diberi pewarna gram menghasilkan warna merah

CIRI                         Perbedaan Relatif
Gram Positif             Gram Negatif
Struktur dinding sel        Tebal (15-80 nm)         Tipis (10-15 nm)
Berlapis tunggal         Berlapis tiga (multi)
Komposisi dinding sel     Kandungan lipid rendah    Kandungan lipid tinggi
(1-4 %)             (11-22 %)
Peptidoglikan ada         Peptigodoglikan ada di
sebagai lapisan tunggal;     dalam lapisan kokus
komponen utama         sebelah dalam jumlahnya
merupaka lebih dari 50 %     sedikit merupakan sekitar
berat kering pada        10 % berat kering.
beberapa sel bakteri
Ada asam tekoat         Tidak ada asam tekoat
Kerentanan terhadap         Lebih rentan             Kurang rentan
Penisilin
Pertumbuhan dihambat     Pertumbuhan dihambat     Pertumbuhan tidak
oleh zat-zat warna dasar    dengan nyata             begitu dihambat
misalnya unggu kristal
Persyaratan nutrisi         Relatif rumit pada banyak     Relatif sederhana
spesies
Resistensi terhadap        Lebih resisten            Kurang resisten
gangguan fisik

Bakteri dapat kehilangan dinding sel akibat pengaruh antibiotik, misalnya penisilin. Sel bakteri tersebut disebut protoplas. Membran sitoplasma terletak didalam sitoplasma yang merupakan pembungkus dari protoplasma dan membran ini ikut menyusut bersamasama dengan menyusutnya protoplasma pada waktu mengalami plasmalisis membran stoplasma terdiri atas fospolifida (yang mengandung gliserol,asam lemak dan fosfat) dan protein terpadu didalamnya membrane sitoplasma memiliki beberapa fungsi diantaranya adalah :
1.    Pada organisme aerob membran ini mengangkut elektron dan proton yang dibebaskan pada waktu oksidasi dan mengubah energi yang dihasilkan dari oksidasi menjadi energi kimia yang dapat digunakan oleh sel.
2.    Membran sitoplasma mengandung enzim yang diperlukan untuk sintesis dan pengangkutan peptidoglikan, asam teikoat dan komponen membran luar sel
3.    Mengeluarkan enzim hidrolistis luar sel
4.    Menjamin pemisahan material nukleus (DNA) ke sel anak pada waktu pembelahan sel.
5.    Mengatur pengangkutan sebagian besar senyawa yang memasuki dan meninggalkan sel.

h. Cairan sel atau sitoplasma
Cairan sel atau eitoplasma atau disebut juga protoplasma. Protoplasma 80 % terdiri atas air, selain itu protoplasama juga mengandung asam nukleat, protein, karbohidrat, lipida, ion organik, belerang, kalsium karbohidrat dan volutin yaitu suatu zat yang banyak mengandung asam ribonukleat (ARN) dan yang mudah menyerap zat warna tertentu.
i. Kromosom bakteri
Walaupun sel prokariot tidak memiliki pembungkus nukleus, kromosomnya terbuat dari asam deoksiribonukleat yang secara kimia sama dengan yang terdapat dalam sel berbagai molekul tunggal dalam sel juga terdapat potongan-potongan DNA yang disebut plasmid. Akan tetapi, karena sifat basofil sitoplasma, tidaklah mudah untuk melihat DNA yang sudah di warnai, kecuali jika sel sebelumnya dihidrolisis dengan asam lemak untuk menghilangkan asam ribonukleat sitoplasma.
j. Ribosom
Sitoplasma bakteri dipenuhi oleh ribosom-ribosom dalam jumlah yang besar ini menyebabkan tingginya laju aktivitas metabolisme bakteri fungsi dari ribosom adalah dalam sintesis protein komposisi kimia dari ribosom adalah 40 % protein dan 60% RNA.
k. Mesosom
Invaginasi (lekukan atau melipat kearah dalam membran sitoplasma akan biasanya menghasilkan suatu struktur, biasanya bentuknya tak menentu yang disebut mesosom. Mesosom selalu sinambung dengan membran siplasma, mereka sering dijimpai bermula pada titik tempat membran memulai invaginasi sebelum terjadinya pembelahan sel dan mereka jadi lekat pada daerah nukleus. Fungsi dari mesosom adalah dalam replikasi sel dengan bertindak sebagai organ pelekatan kromosom bakteri, juga berfungsi dalam sintesis dinding sel dan pembelahan nukleus.
l. Inkubasi Sitoplasma
Berbagai substansi kimiawi dapat menumpuk dan membentuk granul serta globul dalam sitoplasma yang disebut tubuh inklusi sel terdiri dari kepingan-kepingan kecil material yang tidak menjadi bagian untuk struktur sel kepingan ini terdiri dari satuan butiran yang beraneka ragam yaitu : glikogen, tetesan asam polihidroksibutirat, metafosfat anorganik, belerang, atau senyawa yang mengandung nitrogen. Satu inklusi yang umum tersusun dari polimer polimeta fosfat yang berbobot molekul tinggi. Butiran-butiran khusus ini yang rupanya bertindak sebagai fosfat dan sumber energi bagi sel butiran ini disebut butiran metakromat.
m. Kromatofor
Karena sel-sel prokariotik tidak mempunyai kloroplas maka pada bakteri terdapat kromatofor yang mewakili sistem membran khusus dalam berfotosintesis krmotofor terbentuk gelembung yang terdapat diseluruh sitoplasma kromaton tersebut berisi pigmen-pigmen yang berhubungan dengan fotosintesis.
n. Benang aksial
Benang aksial terdiri dari fibril yang dililitkan secara spiral disekelilingi organisme dan menempel pada kedua kutub sel. Benang aksial terletak di luar dinding sel yang tersusun atas fibril yang saling bertumpukan.Benang akasial berfungsi sebagai alat untuk menggerakan (motilitas) spirochaeta karena benang akasial ini hanya terdapat pada spirochaeta.
o. Spora
Pada spesies-spesies tertentu, ialah bentuk bakteri menghasilkan spora. Spora bakteri ialah bentuk bakteri yang sedang dalam usaha mengamankan diri dari pengaruh buruk dari luar. Spora bakteri mempunyai fungsi yang sama seperti kista pada amoeba. Jika keadaan lingkungan tidak menguntungkan maka bakteri akan membentuk spora, jika keadaan lingkungan membaik maka spora akan pecah.
Marga yang mempunyai kemampuan membentuk endospora hanya marga bacillus, clostridium, sporosarium, sporolactobacillus dan deslfotomaculum.. Endospora adalah tubuh kecil yang tahan lama yang terbentuk di dalam sel dan mampu tumbuh menjadi organisme vegetative yang baru. Apabila sel vegetatif membentuk endospora, sel ini membentuk enzim baru, memproduksi dinding sel yang sama sekali baru dan berubah bentuk, dengan kata lain sporulasi adalah bentuk sederhana diferensiasi sel. Bakteri yang mampu membentuk endospara dapat tumbuh dan bereproduksi selama banyak generasi sebagai sel vegetatif, namun pada beberapa tahapan didalam pertumbuhannya terjadi sintesis protopiasma baru didalam sitoplasma vegetatifnya yang dimaksudkan untuk menjadi spora.
Langkah-langkah utama didalam proses tersebut adalah sebagai berikut :
a)    Penjajaran kembali bahan DNA menjadi filamen dan invaginasi membawa sel ke dekat satu ujung sel membentuk suatu struktur yang disebut bakal spora.
b)    Pembentukan sederetan lapisan yang menutupi bakal spora, yaitu korteks spora diikuti dengan selubung spora berlapis banyak.
c)    Pelepasan spora bebas seraya sel mengalami irsis.
Salah satu ciri unik endospora bakteri ialah susunan kimiawinya semua endospora bakteri mengandung sejumlah besar asam dipikolinat (subtansi yang tidak terdeteksi pada sel vegetatif).

2.2 JAMUR
Penampilan fungi atau cendawan tidak asing lagi bagi kita semua. Kita telah melihat pertumbuhan berwarna biru dan hijau pada buah jeruk dan keju jadi
cendawan mempunyai berbagai macam penampilan, tergantung pada spesiesnya. Telaah mengenai cendawan disebut mikologi. Cendawan terdiri dari kapang dan khamir. Kapang bersifat filamentus sedangkan khamir biasanya uniseluler.
Jamur atau cendawan merupakan organisme yang heterotrofik. Mereka memerlukan senyawa organik untuk nutrisinya. Bila mereka hidup dari benda organik mati yang terlarut, maka mereka disebut saprofit. Saprofit menghancurkan sisa-sisa tumbuhan dan hewan yang kompleks. Menguraikannya menjadi zat-zat kimia yang lebih sederhana, yang kemudian dikembalikan ke dalam tanah dan akan meningkatkan kesuburan tanah. Jadi mereka bisa sangat menguntungkan manusia. Sebaliknya mereka juga dapat merugikan kita bilamana mereka membusukkan kayu, tekstil, makanan dan bahan-bahan lain. cendawan saprofitik juga penting dalam fermentasi industri misalkan pembuatan bir, minuman anggur dan produksi antibiotik seperti penisilin. Peragian adonan dan pemasakan beberapa keju juga tergantung kepada kegiatan cendawan.
1. Morfologi Jamur
Pada umumnya jamur dibagi menjadi 2 yaitu: khamir (Yeast) dan kapang (Mold).
a. Khamir.
Khamir adalah bentuk sel tunggal dengan pembelahan secara pertunasan. Khamir mempunyai sel yang lebih besar daripada kebanyakan bakteri, tetapi khamir yang paling kecil tidak sebesar bakteri yang terbesar.khamir sangat beragam ukurannya,berkisar antara 1-5 μm lebarnya dan panjangnya dari 5-30 μm atau lebih.Biasanya berbentuk telur,tetapi beberapa ada yang memanjang atau berbentuk bola. Setiap spesies mempunyai bentuk yang khas, namun sekalipun dalam biakan murni terdapat variasi yang luas dalam hal ukuran dan bentuk.Sel-sel individu, tergantung kepada umur dan lingkungannya. Khamir tidak dilengkapi
flagellum atau organ-organ penggerak lainnya.
1). Khamir Murni
Adalah khamir yang dapat berkembang biak dengan cara seksual dengan pembentukan askospora khamir ini diklasifikasikan sebagai Ascomycetes (Saccharomyces cerevisae, Saccharomyces carlbergesis, Hansenula anomala, Nadsonia sp).
2).Khamir Liar
Adalah khamir murni yang biasanya terdapat pada kulitanggur. Khamir ini mungkin digunakan dalam proses fermentasi, meskipun galur yang diperbaiki telah dikembangkan yang menghasilkan anggur dengan rasa yang lebih enak dengan bau yang lebih menyenangkan. Khamir liar yang ada dikulit anggur dimatikan dengan penambahan dioksida belerang pada buah anggur yang telah dihancurkan. Inokulum galur khamir yang dikehendaki ditambahkan kemudian untuk memfermentasi air perasan anggur.
3). Khamir Atas
Adalah khamir murni yang cenderung memproduksi gas sangat cepat sewaktu fermentasi,sehingga khamir itu dibawa kepermukaan. Khamir atas mencakup khamir yang digunakan dalam pembuatan roti,untuk kebanyakan anggur minuman dan bir inggris (Saccharomyces cereviceae).
4). Khamir Dasar
Adalah khamir murni yang memproduksi gas secara lebih lamban pada bagian awal fermentasi. Jadi sel khamir cenderung untuk menetap pada dasar. Galur terpilih digunakan dalam industri bir lager (Saccharomyces carlsbergensis).
5). Khamir Palsu atau Torulae
Adalah khamir yang didalamnya tidak terdapat atau dikenal tahap pembentukan spora seksual. Banyak diantaranya yang penting dari segi
medis (Cryptococcus neoformans, Pityrosporum ovale, Candida albicans).
b.Kapang.
Tubuh atau talus suatu kapang pada dasarnya terdiri dari 2 bagian miselium dan spora (sel resisten, istirahat atau dorman). Miselium merupakan kumpulan beberapa filamen yang dinamakan hifa. Setiap hifa lebarnya 5-10 μm, dibandingkan dengan sel bakteri yang biasanya berdiameter 1 μm. Disepanjang setiap hifa terdapat sitoplasma bersama.
Ada 3 macam morfologi hifa:
1.    Aseptat atau senosit, hifa seperti ini tidak mempunyai dinding sekat atau septum.
2.    Septat dengan sel-sel uninukleat, sekat membagi hifa menjadi ruang-ruang atau sel-sel berisi nucleus tunggal. Pada setiap septum terdapat pori ditengah-tengah yang memungkinkan perpindahan nucleus dan sitoplasma dari satu ruang keruang yang lain.setiap ruang suatu hifa yang bersekat tidak terbatasi oleh suatu membrane sebagaimana halnya pada sel yang khas, setiap ruang itu biasanya dinamakan sel.
3.     Septat dengan sel-sel multinukleat, septum membagi hifa menjadi sel-sel dengan lebih dari satu nukleus dalam setiap ruang.
Kapang lendir merupakan sekumpulan mikroorganisme yang heterogen. Pada kapang lendir terdapar ciri-ciri hewan dan tumbuhan. Fase vegetatif atau somatic yang aselular dan merayap jelas mempunyai struktur dan fisiologi seperti binatang, struktur reproduktifnya seperti tumbuhan,yaitu menghasilkan spora yang terbungkus dinding yang nyata.gabungan fase seperti binatang dan seperti tumbuhan dalam satu daur hidup merupakan ciri pembeda kapang lendir. Ada 4 tipe kapang lendir yang berbeda dalam struktur dan fisiologi serta masing-masing mempunyai daur hidup yang khas yaitu kapang lendir sejati (Myxomycetes), kapang lendir endoparasit (Plasmodiophoromycetes), kapang lendir jaring (Labyrinthulales), kapang lendir selular (Acraciales).
Fungi atau cendawan adalah organisme heterotrof, mereka memerlukan senyawa organik untuk nutrisinya.Bila mereka hidup dari benda organik mati yang terlarut, mereka disebut saprofit. Saprofit menghancurkan sisa tumbuhan dan hewan yang kompleks, menguraikannya menjadi zat-zat kimia yang lebih sederhana, kemudian dikembalikan kedalam tanah, dan selanjutnya meningkatkan kesuburannya. Jadi mereka sangat menguntungkan bagi manusia.sebaliknya mereka juga dapat merugikan kita bilamana mereka membusukkan kayu, tekstil, makanan dan bahan-bahan yang lain. Cendawan saprofitik juga penting dalam fermentasi industri, misalnya  pembuatan bir, minuman anggur dan produksi antibiotic seperti penisilin, peragian adonan dan pemasakan beberapa keju juga tergantung kepada kegiatan cendawan.
2. Anatomi Jamur
Jamur tersusun dari benang-benang yang panjang yang dihubungkan bersama dari ujung keujung.Benang-benang itu disebut hifa.Banyak jamur mempunyai dinding sekat (septat) dalam hifanya yang membagi masingmasing hifa menjadi banyak sel dengan nucleus pada masing-masing sel, susunan semacam ini disebut sebagai hifa bersekat.Dalam beberapa klas fungi, benang-benang itu tidak mempunyai septat jadi kelihatan sebagai satu sel panjang yang mengandung banyak nucleus.hifa semacam ini disebut hifa senosit.
Ukuran sel yang menyusun hifa berbeda dari satu jamur satu dengan yang lain.yang besar dapat memiliki garis tengah 10-20 μm (berbeda sekali dengan sel bakteri ,yang bergaris tengah reta-rata (mikrometer). Panjang benang dapat berbeda tergatung pada sejumlah faktor tergantung pada sejumlah faktor seperti bagaimana jamur itu ditumbuhkan. Jamur juga memiliki hifa yang saling mmbelit untuk membentuk masa benang ( masa ini disebut miselium ) yang cukup besar untuk dilihat dengan mata telanjang. Miselium yang berbulu inilah yang memungkinkan jamur dikenal dengan mudah. Berbagai pigmen yang teramati pada jamur terdapat hanya setelah sporaspora dibentuk.
Pada suatu koloni jamur dibedakan atas adanya hifa yang menjalar dan hifa yang tidak menjalar. Hifa yang tegak menghasilkan alat-alat pembiak yang disebut spora. Jamur yang sederhana yang terdiri dari anyaman hifa yang disebut prolenkim atau pseudoprolenkim. Prolenkim adalah jaringan hifa yang kendor. Pseudoprolenkim adalah jaringan hifa yang lebih padat dan seragam. Seringkali ada anyaman hifa yang padat sekali dan berguna untuk mengatasi keadaan yang buruk disebut rizomorf. Stroma adalah jaringan hifa yang cukup kuat atau padat dan berfungsi sebagai bantalan tempat tumbuhnya bermacam-macam bagian lainnya. Anyaman hifa sepadat rizomorf yang berguna untuk mengatasi keadaan buruk disebut sklerotin. Pada jamur yang terdiri atas hifa yang tidak bersekat-sekat, inti tersebar dan tidak terikat pada suatu tempat tertentu. Hifa yang berinti banyak disebut senisit ( coenocyte ). Pada jamur yang bersifat parasit, zat makan dari inang dapat terserap oleh sel-sel jamur dengan jalan osmosis lewat dinding inang dan inti jamur. Tetapi ada juga parasit-parasit yang membentuk semacam akar ( haustoria ) yang masuk ke dalam sel inang untuk mengambil makanannya. Bentuk haustoria ada yang berupa suatu gelembung bertangkai, tidak bertangkai dan atau berupa suatu hifa yang bercabang-cabang.
3. Reproduksi Jamur
Spora aseksual,yang berfungsi untuk penyebarkan spesies dibentuk dalam jumlah besar. Ada banyak spora aseksual :
a.Konidiospora atau konidium.
Konidium yang kecil dan bersel satu disebut mikrokonidium. Konidium yang besar lagi bersel banyak dinamakan makrokonidium. Konidium dibentuk diujung atau disisi suatu hifa.
b. Sporangiospora.
Spora bersel ini terbentuk di dalam kantung yang disebut sporangium diujung hifa khusus (sporangiosfor). Aplanospora ialah sporangiospora nonmotil. Zoospora ialah sporangiospora yang motil,motilitasnya disebabkan oleh adanya flagelum.
c. Oidium atau artrospora.
Spora bersel satu ini terbentuk karena terputusnya sel-sel hifa.
d. Klamidospora.
Spora bersel satu yang berdinding tebal ini sangat resisten terhadap keadaan buruk,terbentuk dari sel-sel hifa somatik.
e. Blastospora.
Tunas atau kuncup pada sel-sel khamir disebut blastospora. Spora seksual, yang dihasilkan dari peleburan 2 nukleus. Terbentuk lebih jarang, lebih kemudian dan dalam jumlah yang lebih sedikit dibandingkan dengan spora aseksual. Juga,hanya terbentuk dalam keadaan tertentu. Ada beberapa tipe spora seksual :
a. Askospora.
Spora bersel satu ini terbentuk didalam pundi atau kantung yang dinamakan askus. Biasanya terdapat 8 askospora didalam setiap askus.
b. Basidiospora.
Spora bersel satu ini terbentuk diantara struktur berbentuk gada yang dinamakan basidium.
c. Zigospora.
Zigospora adalah spora besar berdinding besar yang terbentuk apabila ujung-ujung dua hifa yang secara seksual serasi,disebut juga gametangia,pada beberapa cendawan melebur.
d. Oospora.
Spora ini terbentuk didalam struktur betina khusus yang disebut ooginium. Pembuahan telur,atau oosfer,oleh gamet jantan yang terbentuk didalam anteredium menghasilkan oospora. Dalam setiap oogonium dapat ada satu atau beberapa oosfer.
Spora aseksual dan seksual dapat dikitari oleh struktur pelundung yang sangat terorganisasi yang disebut tubuh buah. Tubuh buah aseksual diantaranya ialah aservulus dan piknidium. Tubuh buah seksual yang umum disebut peritesium dan apotesium.

2.3. VIRUS
Virus adalah parasit intraselular obligat. Virus memberikan perhatian pada satuan biologi yang dalam keadaan sendiri tidak memiliki kehidupan, sebab virus memanifestasikan kehidupan sendiri yang diukur oleh reproduksi hanya setelah berhasil memasuki sel inang yang rentan. Jadi virus berada dalam daerah somatik samar-samar antara hidup dan tidak hidup. Statusnya bergantung kepada apakah virus berkembang biak didalam sel yang rentan atau apakah virus berada dalam ekstraselular. Pemilahan viru dapat dilakukan berdasarkan ukuran, bentuk, susunan kimiawi, kisaran organisme yang diserang kerusakan ditimbulkan pada sel dan mengubah sifat genetik.
Virus mempunyai ukuran dan bentuk yang beraneka ragam, tetapi pada umumnya jelas dibawah batas penglihatan mikroskop cahaya. Ukuran virus dapat ditentukan dengan beberapa teknik, virus menduduki kisaran 20 hingga 250 nm (satu nanometer adalah sepermilyar meter). Jadi bakteri yang panjangnya 1 nm sama dengan 1000 nm. Tiga teknik dasar yang digunakan untuk menentukan ukuran virus adalah :
1.    Filtrasi melalui membran yang degradasi yang ukuran pori membrannya diketahui.
2.    Sentrifugasi kecepatan tinggi (100.000 kali lebih besar dari gravitasi)
3.    Pengamatan langsung dengan mikroskop elektron
Virus dibagi menjadi 3 bagian, yaitu :
a. Virus Bakterial
Bakteriofage (atau sederhananya fage) yaitu virus yang menginfeksi bakteri dan hanya dapat bereproduksi didalam sel bakteri, ditemukan secara terpisah oleh Frederick W. T di Inggris pada tahun 1915 dan oleh Felix d’Herelle di institut Pasteur di Paris pada tahun 1917.
• Ciri-ciri umum
Virus bacterial tersebar luas di alam. Bagi kebanyakan (tidak semua) bakteri, ada fage. Dengan teknik yang sesuai, fage-fage ini dapat diisolasi dengan mudah di laboraturium. Bakteriofage seperti halnya semua virus, terdiri dari sebuah inti asam nukleat yang dikelilingi selubung protein. Virus bacterial terdapat dalam bentuk yang berbedabeda, meskipun banyak yang mempunyai ekor yang digunakannya untuk melewatkan asam nukleatnya ketika menginokulasi sel inang. Ada dua tipe utama virus bacterial yaitu litik atau virulen dan tenang (lisogenik) atau avirulen. Bila fage litik dan menginfeksi sel, sel tersebut memberikan
tanggapan dengan cara menghasilkan virus-virus baru dalam jumlah besar, yaitu pada akhir masa inkubasi, sel inang itu pecah atau mengalami lisis, melepaskan fage-fage baru untuk menginfeksi sel-sel inang yang lain. Hal ini disebut daur litik. Pada infeksi tipe tenang, akibatnya tidak sedemikian jelas. Asam nukleat virus itu dibawa dan direplikasikan didalam sel-sel bakteri dari satu generasi ke generasi yang lain tanpa terjadi lisis pada sel-selnya. Namun fage tenang dapat secara
mendadak menjadi virulen pada suatu generasi berikutnya dan menyebabkan lisis pada sel inangnya. Disamping itu, ada pula beberapa fage berbentuk filament yang hanya sekedar keluar dari sel tanpa mematikannya.
• Morfologi dan struktur
a. Morfologi
Mikroskop elektron telah memungkinkan ditentukannya ciri-ciri struktural virus bakterial. Semua fage mempunyai inti asam nukleat yang ditutupi oleh selubung protein atau kapsid. Kapsid ini tersusun dari sub unit – sub unit morfologis (seperti tampak pada mikroskop elektron) yang disebut kapsomer. Kapsomer terdiri dari sejumlah sub unit atau molekul protein yang disebut protomer. Struktur halus dan anatomis suatu bentuk morfologis umum bakteriofage yaitu satu kepala dan satu ekor.
Virus bakteri dapat dikelompokkan kedalam enam tipe morfologis, yaitu :
1.    Tipe yang paling rumit mempunyai kepala heksagonal, ekor yang kaku dengan seludang kontraktil dan serabut ekor.
2.    Serupa dengan yang pertama, tipe ini mempunyai kepala heksagonal tetapi tidak mempunyai seludang kontraktil, ekornya kaku dan mengenai serabut ekor ada yang mempunyai dan ada yang tidak.
3.    Tipe ini dicirikan oleh sebuah kepala heksagonal dan sebuah ekor yang lebih pendek daripada kepalanya. Ekornya itu tidak mempunyai seludang kontraktil dan mengenai serabut ekor ada yang mempunyai dan ada yang tidak.
4.     Tipe ini mempunyai sebuah kepala tanpa ekor dan kepalanya tersusun dari kapsomer besar.
5.    Tipe ini mempunyai sebuah kepala tanpa ekor, dan kepalanya tersusun dari kapsomer kecil.
6.    Tipe ini berbentuk filamen.
Tipe-tipe 1, 2 dan 3 menunjukkan morfologi yang unik bagi bakteriofage. Tipe-tipe morfologis dalam kelompok 4 dan 5 dijumpai pula pada virus tumbuhan dan hewan (termasuk serangga). Bentuk yang seperti filamen pada kelompok 6 dijumpai pada beberapa virus tumbuhan. Bentuk virus pada umumnya mengingatkan kita pada bentuk hablur, ada yang serupa kotak, berbidang banyak (polihedron), ada yang serupa bola dan ada yang serupa batang jarum. Tubuh virus terdiri atas kulit yang berupa protein sematamata dan isi tubuh ada yang berupa ADN saja atau ARN saja. Virus tanaman berisi ARN atau ADN, virus hewan dapat mengandung ARN atau ADN sedang fage berisi ADN
Bentuk dan isi berbagai virus dapat diikhtisarkan sebagai berikut :
VIRUS         UKURAN         BENTUK     ASAM NUKLEAT
Mosaik tembakau     180 X 300 Å         Jarum             ARN
Kerdil tomat         300 Å            Bola             ARN
Poliomielytis         270 Å             Bola             ARN
Influenza         800 Å             Bola             ARN
cacar             280 X 220 X 220 Å     Kotak             AND

b. Struktur fage
Fage seperti halnya semua virus, dijumpai dalam dua bentuk struktural yang mempunyai simetri kubus atau helikal. Pada penampilan keseluruhan, fage kubus adalah bentuk pada teratur,atau lebih spesifiknya polihedra (tunggal, polyhedron) sedangkanfage helikal berbentuk batang. Virus T (fage T) terdiri atas kepala, ekor, dan benang-benang ekor. Diameter kepala 50 – 65 mμ, sedang panjangnya sampai 100 mμ.
panjang ekor kira-kira 100 mμ juga ukuran ini berbeda bagi masingmasingT.
Beberapa Bakteriofage Escherichia coli
Kelompok bakteriofage yang diteliti paling ekstensif adalah fagekoli, dinamakan demikian karena menginfeksi Escherichia coli galur B yang non motil.
• Isolasi dan kultivasi virus bakterial
Virus bacterial mudah diisolasi dan dikultivasi pada biakan bakteri yang mudah dan sedang tumbuh aktif dalam kaldu atau cawan agar. Pada biakan cair, melisisnya bakteri dapat menyebabkan suatu biakan yang keruh menjadi jernih. Sedangkan pada biakan cawan agar, akan tampak oleh mata biasa daerah-daerah yang jernih atau plak (plaque). Persyaratan utama bagi isolasi dan kultivasi fage ialah harus adanya kondisi optimum untuk pertumbuhan organisme inangnya. Sumber bakteriofage yang paling baik dan paling umum ialah habitat inang. Sebagai contoh, fagekoli atau fage-fage lain yang patogenik bagi bakteri lain yang dijumpai didalam saluran pencernaan dapat diisolasi dengan paling baik dari limbah atau pupuk kandang. Hal ini dilakukan dengan sentrifugasi atau filtrasi bahan sumbernya dan penambahan kloroform untuk membunuh sel-sel bakterinya.
• Reproduksi virus bakterial
Banyak dari apa yang diketahui mengenai reproduksi bakteriofage telah diperoleh dari penelitian mengenai fage-fage T yang bernomor genap yang virulen pada E. coli (T2, T3, T6). Kita akan menggunakan fage-fage ini sebagai suatu model untuk membahas reproduksi fage.
Adsorpsi dan penetrasi
Langkah pertama pada reproduksi suatu bakteriofage ialah adsorpsi. Disini ujung ekor virus menjadi melekat pada dinding sel. Pelekatan itu khusus bagi virus-virus tertentu tersebut dan bakteri yang rentan mempunyai konfigurasi molekular yang komplementer pada situs-situs penerimanya yang berlawanan.
Bila terlampau banyak fage melekat pada bakteri itu dan menembusnya, maka mungkin terjadi lisis prematur, yang tidak di sertai pembentukan virus-virus baru. Penetrasi yang sesungguhnya oleh fage ke dalam sel inang bersifat mekanis, tetapi mungkin dipermudah oleh suatu enzim, lisozim, yang dibawa pada ekor fage yang mencernakan dinding sel. Penetrasi tercapai bila :
1.    Serabut ekor virus melekat pada sel dan ekor terikat erat pada diding sel.
2.    Seludang sel berkontraksi, mendorong inti ekor kedalam sel melalui dinding sel danmembran sel.
3.    Virus itu menginfeksikan DNAnya seperti sebuah alat suntik menyuntikkan vaksin.
Seludang proteinnya yang berbentuk kepala fage dan struktur ekor virus tetap tertinggal diluar sel. Setelah melakukan penetrasi virus berikutnya melakukan replikasi yang diikuti dengan siklus yang dimilliki (lisogenik atau litik).
• Lisogeni
Tidak semua infeksi pada sel bakteri fage berlangsung sebagaimana diuraikan diatas untuk menghasilkan lebih banyak partikel virus dan berakhiran dengan lisis. Suatu hubungan yang sama sekali berbeda dikenal sebagai lisogeni, dapat berkembang antara virus dan bakteri inangnya. Pada lisogeni DNA virus fage tenang itu tidak mengambil alih fungsi gen-gen sel tetapi menjadi tergabung ke dalam DNA inang dan menjadi profage pada kromosom bakteri, berlaku seperti gen. Pada keadaan ini bakteri itu bermetabolisme dan berbiak secara normal, dengan DNA virusnya diteruskan kepada setiap sel anak semua generasi
berikutnya. Tetapi, kadang-kadang karena alasan-alasan yang belum diketahui, DNA virus itu terlepas dari kromosom inang dan terjadilah daur litik. Proses ini disebut induksi spontan.
b. Virus Hewan dan Tumbuhan
Seperti halnya bakteriofage, virion hewan dan tumbuhan tersusun dari suatu inti asam nukleat yang terletak di tengah dikelilingi oleh suatu kapsid yang terbuat dari kapsomer-kapsomer. Semua virion memiliki struktur simetri sejati. Namun pada beberapa virus hewan, nukleokapsid (asam nukleat dan kapsid) dibungkus oleh suatu membran luar yang disebut sampul, yang terbuat dari lipoprotein dan menyembuntikan simetri ini. Virion yang mempunyai sampul peka terhadap pelarut lemak seperti eter dan kloroform. Kemampuan menginfeksinya dilumpuhkan oleh pelarut semacam ini. Virus yang tidak bercampur disebut virion bugil. Virus-virus ini tidak terpengaruh oleh pelarut lemak.
Virus-virus hewan dan tumbuhan sangat beragam ukuran serta bentuknya. tetapi tidak mempunyai morfologi berudu yang khas seperti pada beberapa
bakteriofage. Ukuran dan bentuk merupakan ciri khas bagi setiap tipe virus. Ukuran virion berkisar dari 10 sampai 300 nm.
1. Morfologi
Virus hewan dan tumbuhan dapat diklasifikasikan ke dalam empat kelompok, berdasarkan pada morfologi keseluruhan sebagai berikut :
a). Ikosahedral
Contoh-contohnya ialah poliovirus dan adenovirus masing-masing merupakan penyebab penyakit polio dan infeksi saluran pernafasan.
b). Helikal
Virus rabies merupakan salah satu contohnya, banyak virus tumbuhan yang berbentuk heliks.
c). Bersampul
Nukleokapsid bagian dalam virus ini yang dapat berbentuk ikosahedral ataupun helikal dikelilingi oleh sampul seperti membrane. Beberapa sampul mempunyai proyeksi permukaan yang disebut duri yang terbuat dari glikoprotein (protein dengan gugusan-gugusan karbohidrat). Kehadirannya biasanya dihubungkan dengan kemampuan virion beraglutinasi (menggumpal) dengan eritrosit atau sel-sel darah merah. Virion bersampul bersifat pleomorfik (terbentuk beragam) karena sampul itu tidak kaku. Didalam suatu virus bersampul seperti virus influenza, nukleokapsidnya bergelung didalam sampul.
d). Kompleks
Beberapa virus mempunyai struktur yang rumit sebagai contoh virus stomatitis vesiculer (patogen pada ternak) berbentuk peluru dan bagian luar virion mempunyai duri-duri seperti yang dijumpai pada sampul. Virus cacar (seperti virus vaksinia, virus yang avirulen atau tidak infektif yang digunakan untuk vaksinasi
terhadap penyakit cacar) tidak memiliki kapsid yang dapat dikenali dengan jelas. Tetapi mempunyai beberapa selubung yang mengelilingi asam nukleat.
2. Stuktur dan Komposisi
Seperti halnya bakteriofage virion hewan dan tumbuhan tersusun dari suatu inti asam nukleat yang terletak ditengah dikelilingi oleh kapsid, yang terbuat dari kapsomer-kapsomer. Semua virion mempunyai struktur simetri sejati, namun pada beberapa virus hewan nukleokapsid (asam nukleat dan kapsid) dibungkus oleh suatu membrane luar yang disebut sampul, yang terbuat dari lipoprotein dan menyembunyikan simetri ini. Virion yang mempunyai sampul peka terhadap pelarut lemak seperti eter dan kloroform. Kemampuan menginfeksinya dilumpuhkan oleh pelarut semacam ini. Virus yang tidak bersampul disebut virion bugil. Virus-virus ini tidak terpengaruh oleh pelarut lemak.
a. Asam nukleat
Seperti halnya bakteriofage virus-virus ini hewan dan tumbuhan mengandung DNA atau RNA. Tetapi virion yang sama tidak dapat mengandung kedua-duanya. Hal ini tentunya berbeda dengan semua bentuk kehidupan selular yang tanpa perkecualian, mengandung kedua tipe asam nukleat dalam setiap sel. Ada empat jenis asam nukleat yang mungkin yaitu :
- DNA berutasan tunggal
- RNA berutasan tunggal
- DNA berutasan ganda
- RNA berutasan ganda
Keempat tipe itu telah dijumpai pada virus hewan. Pada virus tumbuhan telah dijumpai RNA berutasan tunggal dan ganda dan juga DNA berutasan tunggal. Disamping itu, struktur asam nukleat di dalam virion dapat lurus atau bundar. Sebagai contoh virus simian pembentuk vakuola 40 (sv 40) yang di jumpai pada sel-sel ginjal kera, mempunyai DNA bundar berutasan ganda. Sedangkan virus herpes,mempunyai DNA lurus berutasan ganda.
b. Protein
Merupakan komponen kimiawi utama yang lain pada virus, dan merupakan bagian yang terbesar dari kapsid. Banyak virus yang kini telah diketahui mengandung suatu enzim atau enzim-enzim yang berfungsi dalam replikasi komponen-komponen asam nukleatnya. Beberapa virion dapat mengandung suatu enzim khusus yang menggunakan RNA virus sebagai model untuk mensintesis utasan RNA kedua yang dapat mengarahkan sel-sel inang untuk membuat virus. Virus tumor RNA mengandung suatu enzim yang mensintesis utasan DNA dengan menggunakan genom RNA virus sebagai acuan.
c. Lipid
Berbagai ragam senyawa lipid (lemak) telah ditemukan pada virus. Senyawa-senyawa ini meliputi fosfolipid, glikolipid, lemak-lemak alamiah, asam lemak aldehide lemak dan kolesterol, fosfolipid adalah substansi lipid yang predominan dan dijumpai pada sampul virus.
d. Karbohidrat
Semua virus mengandung karbohidrat karena asam nukleatnya itu sendiri mengandung ribose dan deoksiribose. Beberapa virus hewan bersampul, seperti virus influenza dan miksovirus yang lain, pada umumnya terdapat duri-duri yang terbuat dari glikoprotein. Keberadaan mikroorganisme merupakan bukti empiris (faktual) kebesaran Allah SWT sebagai Maha Pencipta. Berdasarkan Alqur’an tentang bukti-bukti kebesaran Allah SWT dalam kehidupan alam semesta seperti tersirat dalam surat AN NAHL ayat 13 dan surat THAAHAA ayat 6, yang berbunyi:
“Wamaadzaroalakum fil ardhi muhtalifan alwaa nuhu inna fii dzaalika la aayatal liqoumiyyadzakruuna”
dan Dia (menundukkan pula) apa yang Dia ciptakan untuk kamu di bumi ini dengan berlain-lainan macamnya. Sesungguhnya pada yang demikian itu benar-benar terdapat tanda (kekuasaan Allah) bagi kaum yang mengambil pelajaran.
“Lahumaafiisamaawaati wamaa fil ardhi wamaa baynahumaa wamaa tahtassaroo”.
Kepunyaan-Nya-lah semua yang ada di langit, semua yang ada di bumi, semua yang di antara keduanya dan semua yang di bawah tanah.

SIMBIOSIS FUNGI ENDOFIT DENGAN INANG




Sebagian besar mikroorganisme pada tingkat tertentu dalam hidupnya dipengaruhi oleh kegiatan mikroorganisme lain. Pengaruh tersebut dapat terjadi baik secara langsung maupun tidak langsung. Salah satu dari fenomena antagonisme yaitu antibiosis. Dalam hal ini salah satu dari dua populasi organisme yang berinteraksi menghasilkan senyawa antibiotik.

Antibiotik adalah substansi kimia alamiah hasil metabolisme sekunder mikroorganisme, yang mempunyai kemampuan baik menghambat pertumbuhan maupun membunuh mikroorganisme lain. Definisi tersebut sangat terbatas, karena sekarang banyak molekul yang diperoleh melalui sintesis kimia, mempunyai  aktivitas terhadap mikroorganisme.          Sekarang istilah antibiotika berarti semua substansi baik yang berasal dari alam maupun sintetik yang mempunyai toksisitas selektif terhadap satu atau beberapa mikroorganisme tujuan, tetapi mempunyai toksisitas cukup lemah terhadap inang (manusia, hewan, atau tumbuhan) dan dapat diberikan melalui jalur umum.

Walaupun masa jaya penemuan antibiotika telah berlalu, dimulai sejak tahun 1939 sampai 1959, tetapi penelitian dibidang ini bangkit kembali sejak tahun 1965 dengan penemuan antibiotika semisintetik seperti β-laktamin. Masa kini, bioteknologi antibiotika diarahkan untuk menemukan antibiotika baru dengan mengeksploitasi dunia mikroba, mencari galur yang beragam dari habitat yang beragam, seleksi galur dan perbaikan genetik, tekhnik media dan kultur, biosintesa molekul, fisiologi produksi antibiotika dan optimalisasi, serta modelisasi fermentasi industri. Disamping itu digalakkan mencari antibiotika yang dapat mengatasi AIDS, HIV dan virus hepatitis B (Sudirman, 1994).

Salah satu organisme penghasil antibiotika yang sedang banyak dibicarakan sekarang ini adalah fungi endofit. Fungi endofit biasanya terdapat dalam suatu sistem jaringan seperti daun, ranting, atau akar tumbuhan. Fungi ini dapat menginfeksi tumbuhan sehat pada jaringan tertentu dan mampu menghasilkan mikotoksin, enzim serta antibiotika (Carrol,1988 ; Clay, 1988). Asosiasi beberapa fungi endofit dengan tumbuhan inang mampu melindungi tumbuhan inangnya dari beberapa patogen virulen, baik bakteri maupun jamur (Bills dan Polyshook, 1992).

P E M B A H A S A N

A. Fungi Endofit

Fungi endofit adalah fungi yang terdapat di dalam sistem jaringan tumbuhan, seperti daun, bunga, ranting ataupun akar tumbuhan (Clay, 1988).  Fungi ini menginfeksi tumbuhan sehat pada jaringan tertentu dan mampu menghasilkan mikotoksin, enzim serta antibiotika (Carrol, 1988 ; Clay, 1988).

Asosiasi fungi endofit dengan tumbuhan inangnya, oleh Carrol (1988) digolongkan dalam dua kelompok, yaitu mutualisme konstitutif dan induktif. Mutualisme konstitutif merupakan asosiasi yang erat antara fungi dengan tumbuhan terutama rumput-rumputan. Pada kelompok ini fungi endofit menginfeksi ovula (benih) inang, dan penyebarannya melalui benih serta organ penyerbukan inang. Mutualisme induktif adalah asosiasi antara fungi dengan tumbuhan inang, yang penyebarannya terjadi secara bebas melalui air dan udara. Jenis ini hanya menginfeksi bagian vegetatif inang dan seringkali berada dalam keadaan metabolisme inaktif pada periode yang cukup lama.

Ditinjau dari sisi taksonomi dan ekologi, fungi ini merupakan organisme yang sangat heterogen. Petrini et al. (1992) menggolongkan fungi endofit dalam kelompok Ascomycotina dan Deuteromycotina. Keragaman pada jasad ini cukup besar seperti pada Loculoascomycetes, Discomycetes, dan Pyrenomycetes. Strobell et al. (1996), mengemukakan bahwa fungi endofit meliputi genus Pestalotia, Pestalotiopsis, Monochaetia, dan lain-lain. Sedangkan Clay (1988) melaporkan, bahwa fungi endofit dimasukkan dalam famili Balansiae yang terdiri dari 5 genus yaitu Atkinsonella, Balansiae, Balansiopsis, Epichloe dan Myriogenospora. Genus Balansiae umumnya dapat menginfeksi tumbuhan tahunan dan hidup secara simbiosis mutualistik dengan tumbuhan inangnya. Dalam simbiosis ini, fungi dapat membantu proses penyerapan unsur hara yang dibutuhkan oleh tumbuhan untuk proses fotosintesis serta melindungi tumbuhan inang dari serangan penyakit, dan hasil dari fotosintesis dapat digunakan oleh fungi untuk mempertahankan kelangsungan hidupnya. (Bacon, 1991 ; Petrini et al., 1992 ; Rao, 1994).


B. Produksi Senyawa Antibiotika Oleh Fungi Endofit

Banyak kelompok fungi endofit yang mampu memproduksi senyawa antibiotika yang aktif melawan bakteri maupun fungi patogenik terhadap manusia, hewan dan tumbuhan, terutama dari genus Coniothirum dan Microsphaeropsis (Petrini et al., 1992). Penelitian Dreyfuss et al. (1986), menunjukkan aktivitas yang tinggi dari penisilin N, sporiofungin A, B, serta C yang dihasilkan oleh isolat-isolat endofit Pleurophomopsis sp. dan Cryptosporiopsis sp. yang diisolasi dari tumbuhan  Cardamin heptaphylla Schulz. Lebih lanjut, suatu penelitian yang dilakukan oleh Tscherter dan Dreyfuss (1982) dalam Petrini et al. (1992) menghasilkan suatu kesimpulan bahwa galur-galur endofit Cryptosporiopsis pada umumnya merupakan penghasil senyawa antibiotika berspektrum lebar. Isolat fungi endofit Xylaria spp. juga memiliki potensi besar dalam penelitian-penelitian industri farmasi maupun pertanian. Suatu strain Xylaria yang diisolasi dari tumbuhan epifit di Amerika Selatan dan Meksiko dilaporkan dapat menghasilkan suatu senyawa antibiotika baru dari kelompok sitokalasin (Dreyfuss et al., 1986).

Penelitian Brunner dan Petrini ( 1992) yang melakukan seleksi pada lebih dari 80 spora fungi endofit, hasilnya menunjukkan bahwa 75 % fungi endofit mampu menghasilkan antibiotika. Fungi endofit Xylotropik, suatu kelompok fungi yang berasosiasi dengan tumbuhan berkayu, juga merupakan penghasil metabolit sekunder. Pada suatu studi perbandingan yang dilakukan terhadap berbagai fungi, lebih dari 49 % isolat Xylotropik yang diuji menunjukkan aktivitas antibiotika, sedangkan fungi pembandingnya hanya 28 % (Petrini et al., 1992).

Fungi endofit juga mampu menghasilkan siklosporin A, yang berpotensi sebagai antifungal dan bahan imunosupresif (Borel et al., 1976 ; Petrini et al., 1992). Siklosporin dihasilkan oleh strain Acremonium luzulae (Fuckel) W. Gams, yang diisolasi dari buah strawberry (Moussaif et al., 1977). Senyawa antibiotika lainnya seperti sefalosporin mulanya dihasilkan oleh satu strain Cephalosporium dan Emericellopsis (Acremonium). Selanjutnya juga ditemukan pada fungi Anixiopsis, Arachnomyces,Diheterospora, Paecilomyces, Scopulariopsis dan Spiroidium (Morin dan Gorman, 1982).

Fungi endofit Acremonium coenophialum yaitu yang berasosiasi dengan rumput-rumputan dapat menghambat pertumbuhan patogen rumput Nigrospora sphaerica, Periconia sorghina dan Rhizoctonia cerealis (White and Cole, 1985). Fungi endofit lainnya seperti Taxomyces andreanae dapat menghasilkan senyawa taxol yang berguna sebagai obat anti kanker (Strobel et al., 1996). Menurut Bacon (1988), fungi endofit yang mempunyai nilai komersial dalam bidang farmasi, antara lain Balansia spp. dan Acremonium coenophialum.

Kesimpulan

Fungi endofit dapat menjalin kehidupan bersama dengan tumbuhan inang, dan mampu melindungi tumbuhan inang dari beberapa patogen virulen, diantaranya adalah Acremonium coenophialum. Berbagai senyawa antibiotika yang sangat berguna yang dihasilkan oleh fungi endofit antara lain siklosporin oleh Acremonium luzulae, dan senyawa taxol oleh Taxomyces andreanae.

LINGKUNGAN DAN PROSES ADAPTASI PERTAHANAN MIKROORGANISME DALAM KEHIDUPAN




Abstrak

Semua makhluk hidup sangat bergantung pada lingkungan sekitar, demikian juga jasat renik. Makhluk-makhluk halus ini tidak dapat sepenuhnya menguasai faktor-faktor lingkungan, sehingga untuk hidupnya sangat bergantung kepada lingkungan sekitar. Beberapa faktor lingkungan yang mempengaruhi kehidupan mikroorganisme meliputi faktor-faktor abiotik (fisika dan kimia), dan faktor biotik. Penulisan ini bertujuan untuk mengetahui faktor-faktor lingkungan apa sajakah yang mempengaruhi pertumbuhan mikroorganisme terutama dalam hal fisik, kimia, dan biologi. Kesimpulan dari penulisan ini adalah faktor-faktor lingkungan yang mempengaruhi pertumbuhan mikroorganisme diantaranya adalah pengaruh temperatur, zat warna, dan parasitisme


Kata kunci: Lingkungan, Biotik, Abiotik


PENDAHULUAN

Latar Belakang

Semua makhluk hidup sangat bergantung pada lingkungan sekitar, demikian juga jasat renik. Makhluk-makhluk halus ini tidak dapat sepenuhnya menguasai faktor-faktor lingkungan, sehingga untuk hidupnya sangat bergantung kepada lingkungan sekitar. Satu-satunya jalan untuk menyelamatkan diri dari faktor lingkungan adalah dengan cara menyesuaikan diri (adaptasi) kepada pengaruh faktor dari luar. Penyesuaian mikroorganisme terhadap faktor lingkungan dapat terjadi secara cepat dan ada yang bersifat sementara, tetapi ada juga perubahan itu bersifat permanen sehingga mempengaruhi bentuk morfologi serta sifat-sifat fisiologik secara turun menurun.

Kehidupan mikroba tidak hanya dipengaruhi oleh keadaan lingkungan, akan tetapi juga mempengaruhi keadaan lingkungan. Misalnya, bakteri termogenesis menimbulkan panas di dalam medium tempat tumbuhnya. Beberapa mikroba dapat pula mengubah pH dari medium tempat hidupnya, perubahan ini dinamakan perubahan secara kimia.

Aktivitas mikroba dipengaruhi oleh faktor-faktor lingkungannya. Perubahan lingkungan dapat mengakibatkan perubahan sifat morfologi dan fisiologi mikroba. Beberapa kelompok mikroba sangat resisten terhadap perubahan faktor lingkungan. Mikroba tersebut dapat dengan cepat menyesuaikan diri dengan kondisi baru tersebut. Faktor lingkungan meliputi faktor-faktor abiotik (fisika dan kimia), dan faktor biotik.


Rumusan Masalah

Berdasarkan latar belakang di atas maka dapat diambil rumusan masalah yaitu:

ü  Faktor-faktor fisik apa sajakah yang mempengaruhi pertumbuhan mikroorganisme ?

ü  Faktor-faktor kimia apa sajakah yang mempengaruhi pertumbuhan mikroorganisme ?

ü  Faktor-faktor biologi apa sajakah yang mempengaruhi pertumbuhan mikroorganisme ?


Tujuan Penulisan

Penulisan ini bertujuan untuk mengetahui faktor-faktor lingkungan apa sajakah yang mempengaruhi pertumbuhan mikroorganisme terutama dalam hal fisik, kimia, dan biologi.


Manfaat Penulisan

Penulisan ini memberikan beberapa manfaat. Aspek akademis memberikan informasi ilmiah kepada masyarakat tentang faktor-faktor dan pengaruh lingkungan yang mempengaruhi pertumbuhan mikroorganisme. Aspek ekonomi, dengan mengetahui faktor-faktor dan pengaruh lingkungan yang mempengaruhi pertumbuhan mikroorganisme, masyarakat atau juga pihak industri dapat mengembangbiakan mikroorganisme untuk dimanfaatkan dalam berbagai hal yang ditujukan untuk meningkatkan taraf hidup masyarakat.

PEMBAHASAN

1. Faktor-faktor Fisik

a.       Pengaruh temperatur

Temperatur  merupakan salah satu faktor yang penting di dalam kehidupan. Beberapa jenis mikroba dapat hidup di daerah temperatur yang luas sedang jenis lainnya pada daerah yang terbatas. Pada umumnya batas daerah tempetur bagi kehidupan mikroba terletak di antara 0oC dan 90oC, sehingga untuk masin -masing mikroba dikenal nilai temperatur minimum, optimum dan maksimum. Temperatur minimum suatu jenis mikroba ialah nilai paling rendah dimana kegiatan mikroba asih berlangsun. Temperatur optimum adalah nilai yang paling sesuai /baik untuk kehidupan mikroba. Temperatur maksimum adalah nilai tertinggi yang masih dapat digunakan untuk aktivitas mikroba tetapi pada tingkatan kegiatan fisiologi yang paling minimal.

Daya tahan mikroba terhadap temperatur tidak sama untuk tiap-tiap spesies. Ada spesies yng mati setelah mengalami pemanasan beberapa menit didalam medium pada temperature 60oC; sebaliknya bakteri yang membentuk spora seperti genus Bacillus dan genus Clostridium tetap hidup setelah dipanasi dengan uap 100oC atau lebih selama 30 menit. Oleh karena itu, proses sterilisasi untuk membunuh setiap spesies bakteri yakni dengan pemanasan selama 15-20 menit dengan tekanan 1 atm dan temperatur 121oC di dalam otoklaf.

Mengenai pH medium kenapa berpengaruh terhadap daya tahan mikroba terhadap pemanasan bahwa sedikit perubahan pH menuju asam atau basa sangat berpengaruh terhadap pemanasan. Sehubungan dengan hal ini, maka buah-buahan yang masam lebih mudah disterilkan dari pada sayur mayur atau daging.

Golongan bakteri yang dapat hidup pada batas-batas temperature yang sempit, misalnya Gonococcus yang hanya dapat hidup pada kisaran 30-40oC. golongan mikroba yang memiliki batas temperatur minimum dan maksimum tidak telalu besar, disebut stenotermik. Tetapi Escherichia coli tumbuh pada kisaran temperatur 8-46oC, sehingga beda (rentang) antara temperatur minimum besar, inilah yang disebut golongan euritermik. Bila mikroba dipiara dibawah temperatur minimum atau sedikit diatas temperatur maksimum tidak segera mati, melainkan dalam keadaan dormansi (tidur).

Berdasarkan daerah aktivitas temperatur, mikroba di bagi menjadi 3 golongan, yaitu:

a.       Mikroba psirkofilik (kryofilik) adalah golongan mikroba yang dapat tumbuh pada daerah temperatur antara 0 C sampai 30 C, dengan temperatur optimum 15 C. kebanyakan golongan ini tumbuh d tempat-tempat dingin, baik di daratan maupun di lauatan.

b.      Mikroba mesofilik adalah golongan mikroba yang mempunyai temperatur optimum pertumbuhan antara 25 C-37 C minimum 15 C dan maksimum di sekitar 55 C. umumnya  hidup di dalam alat pencernaan, kadang-kadang ada juga yang dapat hidup dengan baik pada temperatur 40 C atau lebih.

c.       Mikroba termofilik adalah golongan mikroba yang dapat tumbuh pada daerah temperature tinngi, optimum 55C-60 C, minmum 40 C, sedangkan maksimum 75 C. golongan ini terutama terdapat di dalam sumber-sumber air panas dan tempat-tempat lain yang bertemperatur lebih tinggi dari 55 C.

Grafik pertumbuhan mikroba pada berbagai kisaran suhu pertumbuhan

Temperatur tinggi melebihi temperatur maksimum akan menyebabkan denaturasi protein dan enzim. Hal ini akan menyebabkan terhentinya metabolisme. Dengan nilai temperatur yang melebihi maksimum, mikroba akan mengalami kematian. Titik kematian termal suatu jenis mikroba (Thermal Death Point) adalah nilai temperatur serendah-rendahnya yang dapat mematikan jenis mikroba yang berada dalam medium standar selama 10 menit dalam kondisi tertentu. Laju kematian termal (thermal Deat Rate) adalah kecepatan kematian mikroba akibat pemberian temperatur. Hal ini karena tidak semua spesies mati bersama-sama pada suatu temperatur  tertentu. Biasanya, spesies yang satu lebih tahan dari pada yang lain terhadap suatu pemanasan, oleh karena itu masing-masing spesies itu ada angka kematian pada suatu temperatur. Waktu kematian temal (Thermal Death Time) merupakan waktu yang diperlukan untuk membunuh suatu jenis mikroba pada suatu temperatur yang tetap.

Faktor-faktor yang mempengaruhi titik kematian termal antara lain ialah waktu, temperatur, kelembaban, bentuk dan jenis spora, umur mikrroba, pH dan komposisi medium. Contoh waktu kematian thermal (TDT/ thermal death time) untuk beberapa jenis bakteri adalah sebagai berikut :

Nama mikroba
Waktu
(menit)
Suhu (0C)
Escherichia coli
20-30
57
Staphylococcus aureus
19
60
Spora Bacilus subtilis
20-50
100
Spora Clostridium botulinum
100-330
100

b.      Kelembaban dan Pangaruh Kebasahan serta Kekeringan

Mikroba mempunyai nilai kelembaban optimum. Pada umumnya untuk pertumbuhan ragi dan bakteri diperlukan kelembaban yang tinggi di atas 85%, sedangkan untuk jamur di perlukan kelembaban yang rendah dibawah 80%. Banyak mikroba yang tahan hidup di dalam keadaan kering untuk waktu yang lama, seperti dalam bentuk spora, konidia, artospora, klamidospora dan kista.

Setiap mikroba memerlukan kandungan air bebas tertentu untuk hidupnya, biasanya diukur dengan parameter aw (water activity) atau kelembaban relatif. Mikroba umumnya dapat tumbuh pada aw 0,998-0,6. bakteri umumnya memerlukan aw 0,90- 0,999. Mikroba yang osmotoleran dapat hidup pada aw terendah (0,6) misalnya khamir Saccharomyces rouxii. Aspergillus glaucus dan jamur benang lain dapat tumbuh pada aw 0,8. Bakteri umumnya memerlukan aw atau kelembaban tinggi lebih dari 0,98, tetapi bakteri halofil hanya memerlukan aw 0,75. Mikroba yang tahan kekeringan adalah yang dapat membentuk spora, konidia atau dapat membentuk kista.  Tabel berikut ini memuat daftar aw yang diperlukan oleh beberapa jenis bakteri dan jamur :

Nilai aw
Bakteri
Jamur
1,00
Caulobacter
Spirillum
-
0,90
Lactobacilus
Bacillus
Fusarium
Mucor
0,85
Staphylococcus
Debaromyces
0,80
-
Penicillium
0,75
Halobacterium
Aspergillus
0,60
-
Xeromyces

Bakteri sebenarnya mahluk yang suka akan keadaan basah, bahkan dapat hidup di dalam air. Hanya di dalam air yang tertutup mereka tak dapat hidup subur; hal ini di sebabkan karena kurangnya udara bagi mereka. Tanah yang cukup basah baiklah bagi kehidupan bakteri. Banyak bakteri menemui ajalnya, jika kena udara kering. Meningococcus, yaitu bakteri yang menyebabkan meningitis, itu mati dalam waktu kurang daripada satu jam, jika digesekkan di atas kaca obyek. Sebaliknya,spora-spora bakteri dapat bertahan beberapa tahun dalam keadaan kering.

Pada proses pengeringan, air akan menguap dari protoplasma. Sehingga kegiatan metabolisme berhenti. Pengeringan dapat juga merusak protoplasma dan mematikan sel. Tetapi ada mikrobia yang dapat tahan dalam keadaan kering, misalnya mikrobia yang membentuk spora dan dalam bentuk kista. Adapun syarat-syarat yang menentukan matinya bakteri karena kekeringan itu ialah:

* Bakteri yang ada dalam medium susu, gula, daging kering dapat bertahan lebih lama daripada di dalam gesekan pada kaca obyek. Demikian pula efek kekeringan kurang terasa, apabila bakteri berada di dalam sputum ataupun di dalam agar-agar yang kering.

* Pengeringan di dalam terang itu pengaruhnya lebih buruk daripada pengeringan di dalam gelap.

* Pengeringan pada suhu tubuh (37°C) atau suhu kamar (+ 26 °C) lebih buruk daripada pengeringan pada suhu titik-beku.

* Pengeringan di dalam udara efeknya lebih buruk daripada pengeringan di dalam vakum ataupun di dalam tempat yang berisi nitrogen. Oksidasi agaknya merupakan faktor-maut.

c.       Pengaruh perubahan nilai osmotik

Tekanan osmose sebenarnya sangat erat hubungannya dengan kandungan air. Apabila mikroba diletakkan pada larutan hipertonis, maka selnya akan mengalami plasmolisis, yaitu terkelupasnya membran sitoplasma dari dinding sel akibat mengkerutnya sitoplasma. Apabila diletakkan pada larutan hipotonis, maka sel mikroba akan mengalami plasmoptisa, yaitu pecahnya sel karena cairan masuk ke dalam sel, sel membengkak dan akhirnya pecah.

Berdasarkan tekanan osmose yang diperlukan dapat dikelompokkan menjadi (1) mikroba osmofil, adalah mikroba yang dapat tumbuh pada kadar gula tinggi, (2) mikroba halofil, adalah mikroba yang dapat tumbuh pada kadar garam halogen yang tinggi, (3) mikroba halodurik, adalah kelompok mikroba yang dapat tahan (tidak mati) tetapi tidak dapat tumbuh pada kadar garam tinggi, kadar garamnya dapat mencapai 30 %.

Contoh mikroba osmofil adalah beberapa jenis khamir. Khamir osmofil mampu tumbuh pada larutan gula dengan konsentrasi lebih dari 65 % wt/wt (aw = 0,94). Contoh mikroba halofil adalah bakteri yang termasuk Archaebacterium, misalnya Halobacterium. Bakteri yang tahan pada kadar garam tinggi, umumnya mempunyai kandungan KCl yang tinggi dalam selnya. Selain itu bakteri ini memerlukan konsentrasi Kalium yang tinggi untuk stabilitas ribosomnya. Bakteri halofil ada yang mempunyai membran purple bilayer, dinding selnya terdiri dari murein, sehingga tahan terhadap ion Natrium.











d.      Kadar ion hidrogen (pH)


Mikroba umumnya menyukai pH netral (pH 7). Beberapa bakteri dapat hidup pada pH tinggi (medium alkalin). Contohnya adalah bakteri nitrat, rhizobia, actinomycetes, dan bakteri pengguna urea. Hanya beberapa bakteri yang bersifat toleran terhadap kemasaman, misalnya Lactobacilli, Acetobacter, dan Sarcina ventriculi. Bakteri yang bersifat asidofil misalnya Thiobacillus. Jamur umumnya dapat hidup pada kisaran pH rendah. Apabila mikroba ditanam pada media dengan pH 5 maka pertumbuhan didominasi oleh jamur, tetapi apabila pH media 8 maka pertumbuhan didominasi oleh bakteri. Berdasarkan pH-nya mikroba dapat dikelompokkan menjadi 3 yaitu (a) mikroba asidofil, adalah kelompok mikroba yang dapat hidup pada pH 2,0-5,0, (b) mikroba mesofil (neutrofil), adalah kelompok mikroba yang dapat hidup pada pH 5,5-8,0, dan (c) mikroba alkalifil, adalah kelompok mikroba yang dapat hidup pada pH 8,4-9,5. Contoh pH minimum, optimum, dan maksimum untuk beberapa jenis bakteri adalah sebagai berikut :

Nama mikroba
pH
minimum
optimum
maksimum
Escherichia coli
Proteus vulgaris
Enterobacter aerogenes
Pseudomonas aeruginosa
Clostridium sporogenes
Nitrosomonas spp
Nitrobacter spp
Thiobacillus Thiooxidans
Lactobacillus acidophilus
4,4
4,4
4,4
5,6
5,0-5,8
7,0-7,6
6,6
1,0
4,0-4,6
6,0-7,0
6,0-7,0
6,0-7,0
6,6-7,0
6,0-7,6
8,0-8,8
7,6-8,6
2,0-2,8
5,8-6,6
9,0
8,4
9,0
8,0
8,5-9,0
9,4
10,0
4,0-6,0
6,8

Untuk menumbuhkan mikroba pada media memerlukan pH yang konstan, terutama pada mikroba yang dapat menghasilkan asam. Misalnya Enterobacteriaceae dan beberapa Pseudomonadaceae. Oleh karenanya ke dalam medium diberi tambahan buffer untuk menjaga agar pH nya konstan. Buffer merupakan campuran garam mono dan dibasik, maupun senyawa-senyawa organik amfoter. Sebagai contoh adalah buffer fosfat anorganik dapat mempertahankan pH diatas 7,2. Cara kerja buffe adalah garam dibasik akan mengadsorbsi ion H+ dan garam monobasik akan bereaksi dengan ion OH-.


e.       Tegangan muka

Tegangan muka mempengaruhi cairan sehingga permukaan cairan tersebut menyerupai membran yang elastis. Seperti telah diketahui protoplasma mikroba terdapat di dalam sel yang dilindungi dinding sel, maka apabilaada perubahan tegangan muka dinding sel akan mempengaruhi pula permukaan protoplasma. Akibat selanjutnya dapat mempengaruhi pertumbuhan mikroba dan bentuk morfologinya. Zat-zat seperti sabun, deterjen, dan zat-zat pembasah (surfaktan) seperti Tween80 dan Triton A20 dapat mengurangi tegangan muka cairan/larutan. Umumnya mikroba cocok pada tegangan muka yang relatif tinggi.

f.       Tekanan hidrostatik

Tekanan hidrostatik mempengaruhi metabolisme dan pertumbuhan mikroba. Umumnya tekanan 1-400 atm tidak mempengaruhi atau hanya sedikit mempengaruhi metabolisme dan pertumbuhan mikroba. Tekanan hidrostatik yang lebih tinggi lagi dapat menghambat atau menghentikan pertumbuhan, oleh karena tekanan hidrostatik tinggi dapat menghambat sintesis RNA, DNA, dan protein, serta mengganggu fungsi transport membran sel maupun mengurangi aktivitas berbagai macam enzim. Tekanan diatas 100.000 pound/inchi2 menyebabkan denaturasi protein. Akan tetapi ada mikroba yang tahan hidup pada tekanan tinggi (mikroba barotoleran), dan ada mikroba yang tumbuh optimal pada tekanan tinggi sampai 16.000 pound/inchi2 (barofil). Mikroba yang hidup di laut dalam umumnya adalah barofilik atau barotoleran. Sebagai contoh adalah bakteri Spirillum.

g.      Pengaruh Sinar

Kebanyakan bakteri tidak dapat mengadakan fotosintesis, bahkan setiap radiasi dapat berbahaya bagi kehidupannya. Sinar yang nampak oleh mata kita, yaitu yang bergelombang antara 390 m μ sampai 760 m μ, tidak begitu berbahaya; yang berbahaya ialah sinar yang lebih pendek gelombangnya, yaitu yang bergelombang antara 240 m μ sampai 300 m μ. Lampu air rasa banyak memancarkan sinar bergelombang pendek ini. Lebih dekat, pengaruhnya lebih buruk. Dengan penyinaran pada jarak dekat sekali, bakteri bahkan dapat mati seketika, sedang pada jarak yang agak jauh mungkin sekali hanya pembiakannya sajalah yang terganggu. Spora-spora dan virus lebih dapat bertahan terhadap sinar ultra-ungu. Sinar ultra-ungu biasa dipakai untuk mensterilkan udara, air, plasma darah dan bermacam-macam bahan lainya. Suatu kesulitan ialah bahwa bakteri atau virus itu mudah sekali ketutupan benda-benda kecil, sehingga dapat terhindar dari pengaruh penyinaran. Alangkah baiknya, jika kertas-kertas pembungkus makanan, ruang-ruang penyimpan daging, ruang-ruang pertemuan, gedung-gedung bioskop dan sebagainya pada waktu-waktu tertentu dibersihkan dengan penyinaran ultra-ungu.

2. Faktor-faktor Kimia

a. Fenol Dan Senyawa-Senyawa Lain Yang Sejenis

Larutan fenol 2 sampai 4% berguna bagi desinfektan. Kresol atau kreolin lebih baik khasiatnya daripada fenol. Lisol ialah desinfektan yang berupa campuran sabun dengan kresol; lisol lebih banyak digunakan daripada desinfektan-desinfektan yang lain. Karbol ialah lain untuk fenol. Seringkali orang mencampurkan bau-bauan yang sedap, sehingga desinfektan menjadi menarik.

b. Formaldehida (CH2O)

Suatu larutan formaldehida 40% biasa disebut formalin. Desinfektan ini banyak sekali digunakan untuk membunuh bakteri, virus, dan jamur. Formalin tidak biasa digunakan untuk jaringan tubuh manusia, akan tetapi banyak digunakan untuk merendam bahanbahan laboratorium, alat-alat seperti gunting, sisir dan lain-lainnya pada ahli kecantikan.

c. Alkohol

Etanol murni itu kurang daya bunuhnya terhadap bakteri. Jika dicampur dengan air murni, efeknya lebih baik. Alcohol 50 sampai 70% banyak digunakan sebagai desinfektan.

d. Yodium

Yodium-tinktur, yaitu yodium yang dilarutkan dalam alcohol, banyak digunakan orang untuk mendesinfeksikan luka-luka kecil. Larutan 2 sampai 5% biasa dipakai. Kulit dapat terbakar karenanya , oleh sebab itu untuk luka-luka yang agak lebar tidak digunakan yodium-tinktur.

e. Klor Dan Senyawa Klor

Klor banyak digunakan untuk sterilisasi air minum. Persenyawaan klor dengan kapur atau natrium merupakan desinfektan yang banyak dipakai untuk mencuci alat-alat makan dan minum.

f. Zat Warna

Beberapa macam zat warna dapat menghambat pertumbuhan bakteri. Pada umumnya bakteri gram positif iktu lebih peka terhadap pengaruh zat warna daripada bakteri gram negative. Hijau berlian, hijau malakit, fuchsin basa, kristal ungu sering dicampurkan kepada medium untuk mencegah pertumbuhanbakteri gram positif. Kristal ungu juga dipakai untuk mendesinfeksikan luka-luka pada kulit. Dalam penggunaan zat warna perlu diperhatikan supaya warna itu tidak sampai kena pakaian.

g. Obat Pencuci (Detergen)

Sabun biasa itu tidak banyak khasiatnya sebagai obat pembunuh bakteri, tetapi kalau dicampur dengan heksaklorofen daya bunuhnya menjadi besar sekali. Sejak lama obat pencuci yang mengandung ion (detergen) banyak digunakan sebagai pengganti sabun. Detergen bukan saja merupakan bakteriostatik, melainkan juga merupakan bakterisida. Terutama bakteri yang gram positif itu peka sekali terhadapnya. Sejak 1935 banyak dipakai garam amonium yang mengandung empat bagian. Persenyawaan ini terdiri atas garam dari suatu basa yang kuat dengan komponen-komponen. Garam ini banyak sekali digunakan untuk sterilisasi alat-alat bedah, digunakan pula sebagai antiseptik dalam pembedahan dan persalinan, karena zat ini tidak merusak jaringan, lagipula tidak menyebabkan sakit. Sebagai larutan yang encer pun zat ini dapat membunuh bangsa jamur, dapat pula beberapa genus bakteri Gram positif maupun Gram negatif. Agaknya alkil-dimentil bensil-amonium klorida makin lama makin banyak dipakai sebagai pencuci alat-alat makan minum di restoran-restoran. Zat ini pada konsentrasi yang biasa dipakai tidak berbau dan tidak berasa apa-apa.

h. Sulfonamida

Sejak 1937 banyak digunakan persenyawaan-persenyawaan yang mengandung belerang sebagai penghambat pertumbuhan bakteri dan lagi pula tidak merusak jaringan manusia. Terutama bangsa kokus seperti Streptococcus yang menggangu tenggorokan, Pneumococcus, Gonococcus, dan Meningococcus sangat peka terhadap sulfonamida. Penggunaan obat-obat ini, jika tidak aturan akan menimbulkan gejalagejala alergi, lagi pula obat-obatan ini dapat menimbulkan golongan bakteri menjadi kebal terhadapnya. Khasiat sulfonamida itu terganggu oleh asam-p-aminobenzoat. Asam-p-aminobenzoat memegang peranan sebagai pembantu enzim-enzim pernapasan, dalam hal itu dapat terjadi persaingan antara sulfanilamide dan asam-paminobenzoat. Sering terjadi, bahwa bakteri yang diambil dari darah atau cairan tubuh orang yang habis diobati dengan sulfanilamide itu tidak dapat dipiara di dalam medium biasa. Baru setelah dibubuhkan sedikit asam-p-aminobenzoat ke dalam medium tersebut, bakteri dapat tumbuh biasa. Berikut ialah rumus bangun sulfonamide dan asam-p-aminobenzoat.

Rumus bangun sulfonamide dan asam-p-aminobenzoat

i. Antibiotik

Antibiotik yang pertama dikenal ialah pinisilin, yaitu suatu zat yang dihasilkan oleh jamur Pinicillium. Pinisilin di temukan oleh Fleming dalam tahun 1929, namun baru sejak 1943 antibiotik ini banyak digunakan sebagai pembunuh bakteri. Selama Perang Dunia Kedua dan sesudahnya bermacam-macam antibiotik diketemukan, dan pada dewasa ini jumlahnya ratusan. Genus Streptomyces menghasilkan streptomisin, aureomisin, kloromisetin, teramisin, eritromisin, magnamisin yang masing-masing mempunyai khasiat yang berlainan. Akhir-akhir ini orang telah dapat membuat kloromisetin secara sintetik, obat-obatan ini terkenal sebagai kloramfenikol. Diharapkan antibiotik-antibiotik yang lain pun dapat dibuat secara sintetik pula.

Ada yang kita kenal beberapa antibiotik yang dapat dihasilkan oleh golongan jamur, melainkan oleh golongan bakteri sendiri, misalnya tirotrisin dihasilkan oleh Bacillus brevis, basitrasin oleh Bacillus subtilis, polimiksin oleh Bacillus polymyxa.Antibiotik yang efektif bagi banyak spesies bakteri, baik kokus, basil, maupun spiril, dikatakan mempunyai spektrum luas. Sebaliknya, suatu antibiotik yang hanya efektif untuk spesies tertentu, disebut antibiotik yang spektrumnya sempit. Pinisilin hanya efektif untuk membrantas terutama jenis kokus, oleh karena itu pinisilin dikatakan mempunyai spektrum yang sempit. Tetrasiklin efektif bagi kokus, basil dan jenis spiril tertentu, oleh karena itu tetrasiklin dikatakan mempunyai spektrum luas. Sebelum suatu antibiotik digunakan untuk keperluan pengobatan, maka perlulah terlebih dahulu antibiotik itu diuji efeknya terhadap spesies bakteri tertentu.

j. Garam – Garam Logam

Garam dari beberapa logam berat seperti air raksa dan perak dalam jumlah yang kecil saja dapat menumbuhnkan bakteri, daya mana disebut oligodinamik. Hal ini mudah sekali dipertunjukkan dengan suatu eksperimen.

Sayang benar garam dari logam berat itu mudah merusak kulit, maka alat-alat yang terbuat dari logam, dan lagi pula mahal harganya. Meskipun demikian orang masih bisa menggunakan merkuroklorida (sublimat) sebagai desinfektan. Hanya untuk tubuh manusia lazimnya kita pakai merkurokrom, metafen atau mertiolat. ONa HgOH SHgCH2.CH3 CH3 NO3 COONa metafen mertiolat

Rumus bangun merkurokrom, metafen atau mertiolat

Persenyawaan air rasa yang organik dapat pula dipergunakan untuk membersihkan biji – bijian supaya terhindar dari gangguan bangsa jamur. Nitrat perak 1 sampai 2% banyak digunakan untuk menetesi selaput lendir, misalnya pada mata bayi yang baru lahir untuk mencegah gonorhoea. Banyak juga orang mempergunakan persenyawaan perak dengan protein. Garam tembaga jarang dipakai sebagai bakterisida, akan tetapi banyak digunakan untuk menyemprot tanaman dan untuk mematikan tumbuhan ganggang di kolam-kolam renang.

3. Faktor-faktor Biologi

a. Netralisme

Netralisme adalah hubungan antara dua populasi yang tidak saling mempengaruhi. Hal ini dapat terjadi pada kepadatan populasi yang sangat rendah atau secara fisik dipisahkan dalam mikrohabitat, serta populasi yang keluar dari habitat alamiahnya. Sebagai contoh interaksi antara mikroba allocthonous (nonindigenous) dengan mikroba autochthonous (indigenous), dan antar mikroba nonindigenous di atmosfer yang kepadatan populasinya sangat rendah. Netralisme juga terjadi pada keadaan mikroba tidak aktif, misal dalam keadaan kering beku, atau fase istirahat (spora, kista).

b. Komensalisme

Hubungan komensalisme antara dua populasi terjadi apabila satu populasi diuntungkan tetapi populasi lain tidak terpengaruh. Contohnya adalah:

- Bakteri Flavobacterium brevis dapat menghasilkan ekskresi sistein. Sistein dapat digunakan oleh Legionella pneumophila.

- Desulfovibrio mensuplai asetat dan H2 untuk respirasi anaerobic Methanobacterium.

c. Sinergisme

Suatu bentuk asosiasi yang menyebabkan terjadinya suatu kemampuan untuk dapat melakukan perubahan kimia tertentu di dalam substrat. Apabila asosiasi melibatkan 2 populasi atau lebih dalam keperluan nutrisi bersama, maka disebut sintropisme. Sintropisme sangat penting dalam peruraian bahan organik tanah, atau proses pembersihan air secara alami.

d. Mutualisme (Simbiosis)

Mutualisme adalah asosiasi antara dua populasi mikroba yang keduanya saling tergantung dan sama-sama mendapat keuntungan. Mutualisme sering disebut juga simbiosis. Simbiosis bersifat sangat spesifik (khusus) dan salah satu populasi anggota simbiosis tidak dapat digantikan tempatnya oleh spesies lain yang mirip. Contohnya adalah Bakteri Rhizobium sp. yang hidup pada bintil akar tanaman kacang-kacangan. Contoh lain adalah Lichenes (Lichens), yang merupakan simbiosis antara algae sianobakteria dengan fungi. Algae (phycobiont) sebagai produser yang dapat menggunakan energi cahaya untuk menghasilkan senyawa organik. Senyawa organik dapat digunakan oleh fungi (mycobiont), dan fungi memberikan bentuk perlindungan (selubung) dan transport nutrien / mineral serta membentuk faktor tumbuh untuk algae.

Lichenes

e. Kompetisi

Hubungan negatif antara 2 populasi mikroba yang keduanya mengalami kerugian. Peristiwa ini ditandai dengan menurunnya sel hidup dan pertumbuhannya. Kompetisi terjadi pada 2 populasi mikroba yang menggunakan nutrien / makanan yang sama, atau dalam keadaan nutrien terbatas. Contohnya adalah antara protozoa Paramaecium caudatum dengan Paramaecium aurelia.

f. Amensalisme (Antagonisme)

Satu bentuk asosiasi antar spesies mikroba yang menyebabkan salah satu pihak dirugikan, pihak lain diuntungkan atau tidak terpengaruh apapun. Umumnya merupakan cara untuk melindungi diri terhadap populasi mikroba lain. Misalnya dengan menghasilkan senyawa asam, toksin, atau antibiotika. Contohnya adalah bakteri Acetobacter yang mengubah etanol menjadi asam asetat. Thiobacillus thiooxidans menghasilkan asam sulfat. Asam-asam tersebut dapat menghambat pertumbuhan bakteri lain. Bakteri amonifikasi menghasilkan ammonium yang dapat menghambat populasi Nitrobacter.

g. Parasitisme

Parasitisme terjadi antara dua populasi, populasi satu diuntungkan (parasit) dan populasi lain dirugikan (host / inang). Umumnya parasitisme terjadi karena keperluan nutrisi dan bersifat spesifik. Ukuran parasit biasanya lebih kecil dari inangnya. Terjadinya parasitisme memerlukan kontak secara fisik maupun metabolik serta waktu kontak yang relatif lama. Contohnya adalah bakteri Bdellovibrio yang memparasit bakteri E. coli. Jamur Trichoderma sp. memparasit jamur Agaricus sp.

h. Predasi

Hubungan predasi terjadi apabila satu organisme predator memangsa atau memakan dan mencerna organisme lain (prey). Umumnya predator berukuran lebih besar dibandingkan prey, dan peristiwanya berlangsung cepat. Contohnya adalah Protozoa (predator) dengan bakteri (prey). Protozoa Didinium nasutum (predator) dengan Paramaecium caudatum (prey), dapat dilihat di gambar sebagai berikut.



KAJIAN RELIGI


Di dalam Al-Quran secara tersirat Allah SWT telah menyiratkan akan pentingnya pengaruh lingkungan bagi kehidupan makhluk hidup yang ia ciptakan termasuk mikroorganisme yang juga merupakan salah satu contoh makhluk hidup ciptaan Allah SWT, hal ini tersirat dalam beberapa ayat di dalam Al-Quran diantaranya dalam :

Ø  Q.S AL BAQARAH 164. Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan.

Ø  Q.S AL FURQAAN 61. Maha Suci Allah yang menjadikan di langit gugusan-gugusan bintang dan Dia menjadikan juga padanya matahari dan bulan yang bercahaya.

Dari beberapa ayat diatas dapat kita ketahui bahwa Allah SWT mengisyaratkan bahwa faktor lingkungan sangat berperan dalam kehidupan mikroorganisme. Hal ini diisyaratkan oleh Al Quran dengan angin dan cahaya matahari yang merupakan salalh satu faktor lingkungan yang berperan dalam kehidupan mikroorganisme sangat mempengaruhi pertumbuhan mikroorganisme.


KESIMPULAN


Berdasarkan hasil penulisan “Lingkungan dan Proses Adaptasi Pertahanan Mikroorganisme Terhadap Kehidupan” dapat diambil kesimpulan bahwa:

a.       Faktor lingkungan fisik yang mempengaruhi pertumbuhan mikroorganisme, yaitu pengaruh temperatur, kelembaban dan pengaruh kebasahan serta kekeringan, pengaruh perubahan nilai osmotic, kadar ion Hidrogen (pH), tegangan muka, tekanan,  hidrostatik, pengaruh sinar.

b.      Faktor lingkungan kimia yang mempengaruhi pertumbuhan mikroorganisme, yaitu Fenol Dan Senyawa-Senyawa Lain Yang Sejenis, Formaldehida (CH2O), alcohol, yodium, Klor Dan Senyawa Klor, zat warna, Obat Pencuci (Detergen), Sulfonamida, antibiotik, garam-garam logam.

c.       Faktor lingkungan biologi yang mempengaruhi pertumbuhan mikroorganisme, yaitu netralisme, komensalisme, sinergisme, mutualisme (simbiosis), kompetisi, Amensalisme (Antagonisme), parasitisme, predasi.





SARAN

Berdasarkan penulisan “Lingkungan dan Proses Adaptasi Pertahanan Mikroorganisme Terhadap Kehidupan” maka dapat disarankan bahwa masyarakat ataupun pihak industri yang ingin memanfaatkan jasa dari mikroorganisme harus selalu memperhatikan pengaruh lingkungan yang dibutuhkan mikroorganisme untuk proses kehidupannya. Hal ini sangat diperlukan agar masyarakat ataupun pihak industri dapat memanfaatkan semaksimal mungkin jasa dari mikroorganisme tersebut untuk meningkatkan pendapatan atau juga untuk kepentingan lainnya yang bermanfaat dalam kehidupannya, tanpa menganggu kehidupan dari mikroorganisme tersebut.


DARTAR PUSTAKA

Anonymous. 2006. Faktor yang Mempengaruhi Pertumbuhan Mikroba. (Online). (http://rachdie.blogsome.com/2006/10/14/faktor-yang-mempengaruhi-pertumbuhan-mikroba/) Diakses Tanggal 17 Desember 2008.

Dwijoseputro. 1995. Dasar-dasar Mikrobiologi. Jakarta: Djambatan

Jawetz. 2001. Mikrobiologi Kedokteran. Salemba Medika. Jakarta.

Schlegel, Hans. 1994. Mikrobiologi Umum Edisi Keenam. Gajah Mada University Press. Yogyakarta.

Stanier Roger. Edward Alderberg dan John Ingraham. 1982. Dunia Mikroba 1. Bharata Karya Aksara. Jakarta.

Suriawiria U. 1995. Pengantar Mikrobiologi Umum. Bandung: Angkasa.

Waluyo, Lud. 2005. Mikrobiologi Umum. Universitas Muhammadiyah Malang Prees. Malang.

GENETIKA MIKROORGANISME, SEBUAH ELEMEN DASAR PENYUSUN KEHIDUPAN MIKROORGANISME


Abstrak

Ilmu genetika mendefinisikan dan menganalisis keturunan (heredity) atau konstansi dan perubahan pengaturan dari berbagai fungsi fisiologis yang membentuk karakter organisme. Genetika mikroba telah mengungkapkan bahwa gen terdiri dari DNA, suatu pengamatan yang melekat dasar bagi biologi molekuler. Penulisan ini bertujuan untuk mengetahui pengertian dari genetika virus, bakteri, dan jamur dan komponen yang menyusun genetika dari virus, bakteri, dan jamur. Kesimpulan dari penulisan ini adalah gen dari bakteri virus dan jamur secara umum tersusun dari DNA dan RNA, namun dalam hal tertentu terdapat perbedaan tergantung dari jenis bakteri, virus, dan jamur tersebut.

Kata Kunci: Genetika, DNA, RNA.

PENDAHULUAN

Latar Belakang

Ilmu genetika mendefinisikan dan menganalisis keturunan (heredity) atau konstansi dan perubahan pengaturan dari berbagai fungsi fisiologis yang membentuk karakter organisme. Unit keturunan disebut gen,adalah suatu segmen DNA yang nukleotidanya membawa informasi karakter biokimia atau fisiologis tertentu. Pendekatan tradisional pada genetika telah mengidentifikasikan gen sebagai dasar kontribusi karakter fenotip atau karakte dari keseluruhan stuktural dan fisiologis dari suatu sel atau organisme, karakter fenotip seperti warna mata pada manusia atau resistensi terhadap antibiotik pada bakteri, pada umumnya di amati pada tingkat organisme. Dasar kimia untuk variasi daam fenotip, atau perubahan urutan DNA dalam suatu gen atau dalam organisasi gen.(Jawets, 2001).

Penelaahan tentang genetika pertama kali dilakukan oleh seorang ahli botani bangsa Austria, Gregor Mendel  pada tanaman kacang polongnya. Pada tahun 1860-an ia menyilangkan galur-galur kacang polong dan mempelajari akibat-akibatnya. Hasilnya antara lain terjadi perubahan-perubahan pada warna,bentuk, ukuran, dan siat-sifat lain dari kacang polong tersebut.penelitian inilah ia mengembangkan hukum-hukum dasar kebakaan. Hukum kebakaan berlaku umum bagi semua bentuk kehidupan. Hukum-hukum mendel berlaku manusia dan juga organisme percobaan dahulu amat populer dalam genetika, yakni lalat buah Drosophila. Namun sekarang, percobaan-percobaan ilmu kebakaan dengan menggunakan bakteri Escherichia coli. Bakteri ini di pilih karena paling mudah di pelajari pada taraf molekuler sehingga merupakan organisme pilihan bagi banyak ahli genetika. Hal ini membantu perkembangan bidang genetika mikroba. Jasad renik yang di pelajari dalam bidang genetika mikroba meliputi bakteri, khamir, kapang, dan virus (Waluyo, 2005).

Genetika mikrobia tradisional terutama berdasarkan pada pengamatan atau observasi perkembangan secara luas. Variasi fenotif telah diamati berdasar kemampuan gen untuk tumbuh dibawah kondisi terseleksi, misalnya bakteri yang mengandung satu genyang resisten terhadap ampisilin dapat dibedakan dari bakteri kekurangan gen selama pertumbuhannya dalam lingkungan yang mengandung anti biotik sebagai suatu bahan penyeleksi. Catatan, bahwa seleksi gen memerlukan expresinya dibawah kondisi yang tepat, dapat diamati pada tingkat fenotif.

Genetika mikrobia telah mengungkapkan bahwa gen terdiri dari DNA, suatu pengamatan yang melekat dasar bagi biologi molekuler. Penemuan selanjutnya dari bakteri telahmengungkapkan adanya restriction enzymes (enzim restriksi) yang memotong DNA pada tempat spesifik, menghasilkan fragmen potongan DNA. Plasmida diidentifikasikan sebagai elemen genetika kecil yang mampu melakukan replikasi diri pada bakteri dan ragi. Pengenalan dari sebuah fragmen potongan DNA kedalam suatu plasmid memungkinkan fragmen di perbanyak (teramplifikasi). Amplifikasi regio DNA spesifik dapat di capai oleh enzim bakteri menggunakan polymerase chain reaction (PCR) atau metode amplifikasi nukleotida berdasar enzim yang lain (misalnya amplifikasi berdasar transkripsi). DNA yang di masukkan kedalam plasmid dapat di kontrol oleh promoter ekspresi pada bakteri yang mengamati protein, di ekspresi pada tingkat tinggi. Genetika bakteri mendasari perkembangan rekayasa genetika, suatu teknologi yang bertanggung jawab terhadap perkembangan di bidang kedokteran.(Jewetz, 2001).

Rumusan Masalah

Berdasarkan latar belakang di atas maka dapat diambil rumusan masalah sebagai berikut :

Ø      Apa pengertian dari genetika virus, bakteri, dan jamur ?

Ø      Apa saja komponen yang menyusun genetika dari virus, bakteri, dan jamur ?

Tujuan Penelitian

Penulisan ini betujuan untuk mengetahui pengertian dari genetika virus, jamur, dan bakteri dan komponen apa sajakah yang menyusun genetika virus, jamur, dan bakteri.

Manfaat Penelitian

Penulisan ini memberikan beberapa manfaat. Aspek akademis memberikan informasi ilmiah kepada masyarakat tentang pengertian dari genetika virus, bakteri, dan jamur serta komponen apa sajakah yang menyusun genetika virus, jamur, dan bakteri. Aspek ekonomi dengan mengetahui genetika dari mikroorganisme serta kompoen penyusunnya maka pihak industri dapat membuat mikoorganisme yang mempunyai kualitas yang sama yang digunakan dalam produksi di industrinya dengan memanfaatkan genetika dari mikroorganisme yang mempunyai sifat unggul.

PEMBAHASAN

Struktur DNA dan RNA

Informasi genetika disimpan sebagai suatu urutan basa pada DNA. Pada RNA bakteriofaga (contohnyaQβ  MS2) dan beberapa virus RNA (contohnya virus influenza, dan reovirus), informasi genetika disimpan sebagai urutan basa dalam RNA. Kebanyakan molekul DNA adalah rantai ganda, dengan basa-basa komplementer (A-T; G-C) berpasangan menggunakan ikatan hydrogen pada pusat molekul. Sifat komplementer dari basa memungkinkan satu rantai (rantai cetakan, template) menyediakan informasi untuk salinan atau ekpresi informasi pada suatu rantai yang lain (rantai penyandi). Pasangan-pasangan basa tersusun dalam bagian pusat double helix DNA dan menentukan informasi genetiknya. Setiap empat basa diikatkan pada phosphor-2-deoxyribose membentuk suatu nukleotida. Muatan negetif phosphodiester backbone dari DNA berhadapan dengan pelarut, dan muatan ini tersusun sepanjang struktur linear dari molekul. Panjang molekul DNA pada umumnya tersusun dalam ribuan pasang DNA ribuan pasang basa, atau kilobase pavis (kbp). Suatu virus kecil dapat mengandung satu molekul DNA tunggal yang terdiri dari lima kbp, sedangkan kromosom Eshericia coli adalah 4639 kbp. Setiap pasangan basa dipisahkan dari urutan sebelumnya sekitar 0,34 nm, atau 3,4 X 10-7 nm, sehingga panjang keseluruhan kromosom E.coli diperkirakan I nm. Oleh karena keseluruhan dimensi sel bakteri diperkirakan 1000 kali lebih kecil dari pada panjangnya tersebut sehingga terbentuk lipatan yang melipat lagi atau supercoiling, menyusun struktur fisik dari molekul in vivo.

RNA pada umumnya dalam bentuk rantai tunggal. Basa uracil (U) pada RNA membantu fungsi hibridisasi, sedangkan thymine (T) pada DNA, sehingga basa-basa komplementer yang menentukan struktur RNA adalah A-U dan C-G. keseluruhan struktur dari molekul RNA rantai tunggal di tentukan oleh hibridisasi di antara urutan basa yang membentuk lipatan (loops), membentuk struktur utuh yang mampu mengekspresikan informasi genetik yang terkandung dalam DNA.

Beberapa molekul RNA memiliki fungsi enzim (ribozymes). Fungsi utama RNA adalah komunikasi dari susunan gen DNA ke ribosom dalam bentuk messenger RNA (mRNA). Ribosom yang mengandung ribosomal RNA (rRNA) dan protein-protein, menterjemahkan pesan ke dalam struktur primer dari protein-protein perantara aminoacyl transfer RNA (tRNA). Molekul-molekul RNA bervariasi dalam ukuran dari tRNA yang kecil, yang mengandung kurang dari 100 basa, sampai mRNA yang dapat membawa pesan genetik sepanjang ribuan basa. ribosom bakteri mengandung 3 macam rRNA dengan ukuran 150, 1540, dan 2900 basa, dengan sejumlah protein. Ribosom eukariota memiliki molekul rRNA yang lebih besar. Kebutuhan fisiologik ini ditunjukkan dalam perputaran metabolic yang cepat dari kebanyakan mRNA. Selain itu, tRNA dan rRNA yang dihubungkan dengan fungsi umumnya pada sintesa protein, cenderung stabil, dan keduanya terhitung lebih dari 95 % dari total RNA dalam satu sel bakteri.

Contoh Gambar DNA dan Komponen Secara Umum

\TUGAS\Mikrobiologi\genetika mikroba\3-7e-2.jpg

\TUGAS\Mikrobiologi\genetika mikroba\kode_genetik3.jpg

Genetika Bakteri

Ada dua fenomena biologi pada konsep hereditas yaitu:

1.      Hereditas yang bersifat stabil di mana generasi berikut yang terbentuk dari pembelahan satu sel mempunyai sifat yang identik dengan induknya

2.      Variasi genetik yang mengakibatkan adanya perbedaan sifat generasi berikut dari sel induknya akibat peristiwa genetik tertentu, misalnya mutasi

Pada bakteri, unit herediternya disebut genom bakteri. Genom bakteri lazimnya disebut sebagai gen saja. Gen bakteri biasanya terdapat dalam molekul DNA (asam deoksirinukleat) tunggal, meskipun dikenal pula adanya materi genetik di luar kromosom (ekstra kromosomal), yang di sebut plasmid, yang tersebar luas dalam populasi bakteri. Meskipun bakteri bersifat haploid, transimisi gen dari satu generasi ke generasi berikutnya berlangsung secara linier, sehingga pada setiap siklus pembelahan sel, sel anaknya menerima satu set gen yang identik dengan sel induknya.

Kromosom bakteri yang terdiri dari DNA mempunyai berat  lebih kurang2-3% dari berat kering satu sel. Dengan mikroskop elektron, DNA tampak sebagai benang-benang fibriler yang menempati sebgian besar dari volume sel. Molekul DNA bila diekstraksi dari sel bakteri biasanya mempunyai bentuk yang sirkuler, dengan panjang kira-kira 1 mm. DNA ini mempunyai berat molekul yang tinggi karena terdiri dari heteropolimer dari deoksiribonukleotida purin yaitu Adenin dan Guanin dan deoksiribonukleotida pirimidin yaitu Sitosin dan Timin.

Watson dan Crick, dengan sinar X menemukan bahwa struktur DNA terdiri dari dua rantai poliribonukleotida yang dihubungkan satu sama lain oleh ikatan hidrogen antara purin di satu rantai dengan pirimidin di rantai lain, dalam keadaan antiparalel, dan disebut sebagai struktur double helix. Ikatan hidrogen ini hanya dapat menhubungkan Adenin (6 aminopurin) dengan Timin (2,4 dioksi 5 metil pirimidin) dan antara Guanin (2 amino 6 oksipurin) dengan Sitosin (2 oksi 4 amino pirimidin). Singkatnya pasangan basa pada suatu sekuens DNA adalah A-T dan S-G. Karena adanya sistem berpasangan demikian, maka setiap rantai DNA dapat dijadikan cetakan/template untuk membangun rantai DNA yang komplementer. Waktu terjadinya proses replikasi DNA dalam pembelahan sel, molekul DNA dari sel anaknya terdiri dari satu rantai DNA yang komplememter tapi dibuat baru, dengan kata lain, pemindahan materi genetik dari satu generasi ke generasi berikutnya adalah dengan cara semikonservatif.

Fungsi primer DNA pada hakikatnya adalah sebagai sumber perbekalan informasi genetik yang di miliki oleh sel induk. Proses replikasi di kerjakan dengan amat lengkap sehigga sel anaknya mendapatkan pula informasi genetik yang lengkap, sehingga terjadi kesetabilan genetik dalam suatu  populasi mikroorganisme. Satu benang kromosom biasanya terdiri dari 5 juta pasangan basa dan terbagi atas segmen atau sekwens asam amino tertentu. Dari akan terbentuk stuktur protein. Protein ini kemudian menjadi enzim-enzim, komponen membran sel dan struktur sel yang lain yang  secara keseluruhan menentukan karakter dari sel itu.

Mekanisme yang menunjukan bahwa sekuen nukleotida di dalam gen menentukan sekuens asam amino pada pembentukan protein adalah sebagai berikut:

1.      Suatu enzim amino sel bakteri yang disebut enzim RNA polimerase membentuk satu rantai oliribonukleotida (= messesnger RNA = mRNA) dari rantai DNA yang ada. Proses ini diseut transkripsi. Jadi pada transkripsi DNA, terbentuk satu rantai RNA yang komplementer denagan salah satu rantai double helix dari DNA.

2.      Secara enzimatik asam amino akan teraktifasi dan di transfer kepada transfer  kepada transfer RNA (= tRNA yang mempunyai daptor basa yang komplementer dengan basa mRNA di satu ujungnya dan mempunyai asam amino spesifik di ujung lainnya tiga buah basa pada mRNA di sebut triplet basa yang lazim disebut sebagai kodon untuk suatu asam amino.

3.      mRNA dan tRNA bersama-sama menuju kepermukaan ribosom kuman, dan disinilah rantai polipeptida terbentuk sampai seluruhkodon selesai dibaca menjadi menjadi suatu sekwen asam amino yang membentuk protein tertentu. Proses ini disebut translasi.

DNA Bakteri

Bakteri memiliki kekurangan unsur-unsur yang mengacu pada stuktur komplek yang terlibat dalam pemisahan kromsom-kromosom eukariota menjadi nukleid anak yang berbeda. Replikasi dari DNA bakteri dimulai pada satu titik dan bergerak ke semua arah. Dalam prosesnya, dua pita lama DNA terpisah dan digunakan sebagai model untuk mensistensiskan pita-pita baru (replikasi semikonservatif). Strukur dimana dua pita terpisah dan sintesis baru terjadi disebut sebagai percabangan replikasi. Replikasi kromosom bakteri sangat terkontrol, dan kromosom tiap sel yang tumbuh berkisar antara satu dan empat. Beberapa plasmida bakteri bias memiliki sampai 30 tiruan dalam satu sel bakteri, dan mutas yang menyebabkan control bebas dari relikasi plasmida bahkan bias menghasilkan tirun yang lebih banyak.

Replikasi pita DNA ganda sirkular dimuli pada locus ori dan membuuhkan interaksi dengan beberapa protein. Dalam E coli, replikasi kromosom berakhir pada suatu tempat yang disebut “ter“. Dua kromosom anak terpisah, atau terpecah sebelum pembagian sel, sehingga tiap-tiap keturunan memiliki satu DNA anak. Hal ini dapat disempurnakan dengan bantuan topoisomerase atau melakukan pengkombinasian. Proses serupa yang mengacu pada replikasi DNA plasmida, kecuali pada beberpa kasus, replikasinya adalah tidak terarah.

Contoh Gambar Molekul DNA Bakteri




Transposon

Transposon tidak membawa informasi genetika yang dibutuhkan untuk memasangkan replikasi sendiri terhadap pembagian sel, sehingga perkembangbiakannya tergantung pada penyatuan fisiknya dengan replika bakteri. Penyatuan ini dibantu oleh kemampuan transposon untuk membentuk tiruannya sendiri, yang mungkin disisipkan dalam replika yang sama atau mungkin disatukan pada replika lainnya. Spesifisitas dari rangkaian pada bagian sisipan biasanya rendah, sehingga transposon kadang cenderung menyisip dalam sistem acak. Sebagian besar plasmida ditransfer antar sel-sel bakteri, dan penyisipan dari sebuah transposon ke dalam suatu plasmida bisa menyebabkan penyebaran dalam sebuah populasi.

Fagus

Bakteriofagus menunjukkan cukup banyak keragaman dalam sifat dasar asam nukleat mereka, dan perbedaan ini direfleksikan pada bentuk replikasi yang berbeda. Berbagai strategi perkembangbiakan pada dasarnya ditunjukkan oleh fagus litik dan temperature. Fagus litik menghasilkan banyak tiruan mereka sendiri dalam satu laju pertumbuhan tunggal. Fagus temperatur membentuk mereka sendiri sebagai profagus, baik dengan bagian replika yang terbentuk atau dengan membentuk replika bebas.

Pita DNA ganda dari banyak litik adalah linear dan fase pertama dari replikasinya merupakan pembentukan DNA sirkular. Proses ini tergantung pada ujung-ujung kohesif, ekor pita tunggal pelengkap DNA yang berhibridasi. Ligasi, pembentukan sebuah ikatan fosfodiester antar ekornya, meningkatkan DNA sitkular yang terikat secara kovalen yang mungkin mengalami replikasi dengan cara yang serupa dengan yang digunakan untuk replika lainnya. Pembelahan dari lingkaran sel menghasilkan DNA linear yang terbungkus dalam lapisan protein unuk membentuk fagus turunan.

Pita tunggal DNA dari fagus filamentus diubah menjadi sebuah bentuk replikatif pita ganda sirkular. Sebuah pita bentuk replikatif digunakan sebagai model dalam suatu proses yang terus menerus yang menghasilkan pita DNA. Modelnya adalah lingkaran berputar, dan pita tunggal DNA yang dihasilkan terbelah dan terbungkus protein untuk pengelupasan ekstraseluler.

Ditunjukkan diantara pita tunggal RNA, fagus merupakan partikel ekstraseluler terkecil yang mengandung informasi untuk membantu replikasi diri mereka sendiri. RNA dari fagus MS2 misalnya, berisi (kurang dari 4000 nukleotida) tiga gen yang bias berlaku seperti mRNA yang mengikuti infeksi. Satu gen mewakili protein pelindung dan yang lain mewakili polimerase RNA yang menghasilkan bentuk replikatif adalah inti partikel infeksi baru. Mekanisme perkembangbiakan retrovirus, virus-virus RNA hewan yang menggunakan RNA sebagai model untuk sintesis DNA.

Beberapa bakteriofagus sederhana yang dicontohkan oleh fagus P1 E. coli dapat dibentuk pada tahap profagus sebagai plasmida. Pita ganda DNA dari bakteriofagus sederhana lainnya terbentuk sebagai profagus melalui penyisipannya dalam kromosom induk. Tempat penyisipannya mungkin cukup spesifik, seperti yang dicontohkan oleh penyatuan fagus E. coli pada lokus int. tunggal pada kromosom bakteri.

Contoh-Contoh Gambar Proses Genetika Bakteri





Genetika Virus

Virus mampu bertahan hidup, tetapi tidak tumbuh, bila tidak di dalam sel inang. Replikasi genom virus tegantung pada energi metabolik dan mesin sintesis makromolekul pada inang. Sering, bentuk parasitisme genetik ini mengakibatkan debilitas atau kematian sel inang. Oleh karena itu, keberhasilan perbanyakan virus memerlukan (1) suatu bentuk stabil yang memungkinkan virus bertahan hidup di luar inangnya, (2) suatu mekanisme invasi pada sel inang, (3) informasi genetik untuk replikasi komponen virus dalam sel, dan (4) informasi tambahan yang mungkin diperlukan untuk packaging (menyimpan) komponen virus dan pengeluaran virus dari sel inang.

Perbedaan sering ditemukan antara virus pada sel eukariotik dengan virus pada sel prokariotik (bacteriophage). Perhatian lebih tepat pada sub grup virus, tetapi jangan dilupakan dictum Andre Lwoff : Virus adalah virus. Banyak konsep dasar dari biologi molekuler, muncul dari penemuan bacteriophage.

Molekul asam nukleat bacteriophage dikelilingi suatu mantel protein. Beberapa faga juga mengandung lipid, tetapi hal ini adalah perkecualian. Asam nukleat pada faga bervariasi. Banyak faga memiliki DNA rantai ganda, yang memiliki RNA rantai tunggal. Basa yang tidak umum ditemukan seperti hydroxylmethylcytosine kadang – kadang ditemukan pada asam nukleat faga. Banyak faga memiliki struktur menyerupai alat injeksi syringe khusus yang dapat mengikat reseptor pada permukaan sel dan menginjeksikan asam nukleat ke dalam sel inang.

Faga dapat dibedakan berdasarkan pada cara perbanyakan dirinya. Lytic phagers menghasilkan banyak salinan dirinya sebagai cara memastikan sel inangnya. Kebanyakan laporan studi Lytic phagers, T-phages (missal T2, T4) pada Escherichia coli, memerlukan waktu yang tepat untuk ekspresi gen virus untuk koordinasi pembentukan faga. Temperate phages mampu masuk ke dalam suatu prophage pada keadaan nonlitik, pada replikasi asam nukleatnya dikaitkan dengan replikasi DNA sel inang. Bakteri yang membawa prophage disebut lysogenic, karena suatu signal fisiologik dapat menjadi trigger suatu siklus litik yang mengakibatkan kematian sel inang dan mengeluarkan banyak salinan phages. Karakter terbaik temperate phages adalah E.coli phage λ (lambda). Gen – gen penentu litik atau respons lysogenic pada infeksi λ telah diidnetifikasi dan interaksi yang kompleks telah diexsplorasi secara teliti.

Filamenthous phages, contoh yang telah dipelajari dengan baik adalah E.coli phage M13, filamennya mengandung DNA rantai tunggal yang kompleks dengan protein dan diperoleh dari inangnya, dimana inang mengalami debilitas (keadaan memburuk) tetapi tidak dimatikan oelh infeksi ini. Rekayasa DNA ke dalam phage M13 menyediakan rantai – rantai tunggal yang sangat bernilai untuk analisis dan manipulasi DNA.


Contoh Gambar Struktur Virus

\TUGAS\Mikrobiologi\genetika mikroba\virus.gif\TUGAS\Mikrobiologi\genetika mikroba\biox05_8.jpg


Genetika Jamur

Genom adalah keseluruhan informasi genetik dalam suatu organisme. Hampir semua genom eukariota dibawa pada satu atau lebih kromosom linear terpisah dari sitoplasma didalam membran inti sel (nukleus). Diploid sel eukariota mengandung 2 homologeus (salinan evolusioner) dari setiap kromosom. Mutasi atau perubahan genetik sering tidak dapat dideteksi pada sel diploid karena susunan satu salinan gen kompensasi untuk perubahan fungsi homolognya. Satu gen yang tidak dapat mengekspresi fenotipitik pada keberadaan homolognya. Dinyatakan resesif, sedangkan satu gen yang mengatasi efek homolognya dinyatakan dominan. Efek mutasi dapat sangat tampak pada sel – sel haploid, yang membawa hanya satu salinan tunggal dari kebanyakan gen. Sel – sel yeast (suatu eukairota) sering diteliti, Karena dapat dipertahankan dan dianalisis pada keadaan haploid.

Sel-sel eukariota mengandung mithocondria. Pada beberapa kasus dinyatakan sebagai kllroplas. Didalam setiap organel ini ada satu molekul DNA sirkuler yang mengandung beberapa gen yang berfungsi seperti organel khusus. Kebanyakan gen berhubungan dengan fungsi organel, dibawa oleh kromosom eukariota. Banyak yeast mengandung suatu elemen genetik tambahan, suatu lingkaran 2 μm mampu berreplikasi secara independen, mengandung 6,3 kbp DNA. Semacam lingkaran kecil DNA ini disebut plasmid, sering ditmukan padagenetik eukariota. Ukuran kecil dari plasmid memudahkan manipulasi genetik, dan setelah perubahannya, dapat dimasukkan ke dalam sel-sel. Oleh karena itu, plasmid digunakan pada rekayasa genetika.

Repetitive DNA, dalam jumlah besar pada sel eukariota, telah di temukan pula pada sel prokariota. Pada genom eukariota, repetitive DNA sering dihubungkan dengan region penyandi dan lokasi utama pada regio penyandi dan lokasi utama pada region ekstra gen. susunan pendek berulang (short sequence,SSR) ini atau short tandemly repeateds sequences (STR) ada dalam beberapa salinan atau sampai ribuan salinan yang menyebar di seluruh genom. Adanya SSR pokariata telah di dokumentasikan  dengan baik dan beberapa menunjukan polymorfisme yang luas, variasi ini di perkirakan karena kesalahan pasangan rantai (slipped-strand mispairing) dan hal ini di perlukan untuk adatasi dan hal ini di perlukan untuk adaptasi dan variasi bakteri. Banyak gen eukariota disisipi intron, sisipan susunan DNA yang akan hilang pada mRNA yang di tranlasi. Intron telah diamati pada gen archze tetapi hanya sedikit perkecualian yang tidak di temukan pada eubakteria

Kebanyakan gen jamur di bawa pada kromosom bakteri. Data susunan genom menunjukan bahwa kebanyakan genom jamur terdiri dari satu molekul DNA sirkuler yang mengandung DNA 580 kbp sampai lebih dari 4600 kbp. Banyak bakteri pada jamur mengandung gen-gen tambahan pada plasmid yang bervariasi mulai dari beberapa kbp sampai 100 kbp. DNA sirkuler (kromosom dan plasmid), yang mengandung informasi genetik di perlukan untuk respirasinya disebut replicon. Membrane tidak memisahkan gen bakteri dari sitoplasma seperti pada eukariota dengan beberapa perkecualian, gen bakteri adalah haploid.

Gen-gen yang penting untuk pertumbuhan jamur dibawa pada kromosom, dan plasmid yang membawa gen dikaitkan dengan fungsi-fungsi spesifik. Banyak plasmid membawa gen untuk di pindahkan dari satu organisme ke organisme lain sebaik pada pengaturan DNA (rearrangement DNA). Oleh karena itu gen-gen yang berasal dari hasil evolusi independent dapa di gabungkan dengan plasmid, dapat menyebar diantara populasi bakteri secara luas. Akibat kejadian genetik ini telah diamati pada penyebaran plasmid pembawa resistensi anti biotika setelah penggunaan anti biotika yang bebas di rumah sakit.

Transposon adalah element-element genetik yang mengandung beberapa kbp DNA, termasuk informasi yang di perlukan untuk migrasinya dari satu lokus gen ketempat lainya, sehinga menciptakan mutasi. Peran transposon pendek (750-200 bp), dikenel sebagai incertion element, menghasilkan banyak mutasi akibat insersi. Element ini hanya membawa gen-gen untuk enzim-enzim, yang diperlukan untuk mendorong transposisinya sendiri. Hampir semua bakteri membawa element IS, yang penting pada pembentukan strain-strain dengan high-frequency recombinant (Hfr). Kompleks tranposon membawa gen-gen untuk fungi-fungsi khusus seperti resistensi antibiotika dan diapit oleh IS. Tidak seperti plasmid, tranposom tidak mengandung informasi genetik yang di perluken untuk replikasinya. Seleksi transposon tergantung pada replikasinya sebagai bagian dari suatu replicon. Deteksi atau ekploitasi gen transposon di capai dengan cara seleksi dari informasi genetik khusus (secara normal, resistensi terhadap antibiotika) yang di bawanya.   

DNA Eukariota

Replikasi DNA eukariota terjadi pada beberapa titk tumbuh di sepanjang kromosom linear. Replikasi akurat pada ujung-ujung kromosom linear membutuhkan aktifitas enzimatis yang berbeda dari fungsi-fungsi normal yang terkait dengan replikasi DNA. Berbagai aktifitas tersebut mungkin melibatkan telomere, rangkaian DNA khusus (yang dibawa pada ujung kromosom eukariota) yang cenderung terlibat dalam replikasi akurat dari ujung kromosom. Eukariota telah mengembangkan alat – alat khusus yang disebut kumparan, yang melepas kromosom anak menjadi nukleid terpisah yang baru terbentuk oleh proses mitosis. Pembagian nukleid yang lebih ekstensif oleh meiosis merupakan satu faktor penting dalam mempertahankan struktur kromosom dalam satu spesies. Terkadang sel – sel tunggal tersebut merupakan gamet. Pembentukan gamet yang diikuti oleh penyatuan mereka untuk membentu zigot – zigot gandan merupakan sumber utama untuk variabilitas genetika melalui rekombinasi eukariota.




Gambar Contoh Perkembangbiakan Jamur

\TUGAS\Mikrobiologi\genetika mikroba\28-29-PlasmSlimeMoldLife-L.gif


Kajian Religi

Di dalam Al Quran, Allah SWT menyiratkan akan penciptaan makhluk hidup termasuk penciptaan mikroorganisme yang merupakan bagian dari mahluk hidup ciptaan Allah SWT, serta proses penciptaan dan komponen penyusun makhluk hidup termasuk mikroorganisme seperti dalam beberapa ayat yaitu:

Q.S Al Baqarah 164: Sesungguhnya dalam penciptaan langit dan bumi, silih bergantinya malam dan siang, bahtera yang berlayar di laut membawa apa yang berguna bagi manusia, dan apa yang Allah turunkan dari langit berupa air, lalu dengan air itu Dia hidupkan bumi sesudah mati (kering)-nya dan Dia sebarkan di bumi itu segala jenis hewan, dan pengisaran angin dan awan yang dikendalikan antara langit dan bumi; sungguh (terdapat) tanda-tanda (keesaan dan kebesaran Allah) bagi kaum yang memikirkan.

Q.S An Nur 45: Dan Allah telah menciptakan semua jenis hewan dari air, maka sebagian dari hewan itu ada yang berjalan di atas perutnya dan sebagian berjalan dengan dua kaki sedang sebagian (yang lain) berjalan dengan empat kaki. Allah menciptakan apa yang dikehendaki-Nya, sesungguhnya Allah Maha Kuasa atas segala sesuatu.

Q.S An Nahl 12: Dan Dia menundukkan malam dan siang, matahari dan bulan untukmu. Dan bintang-bintang itu ditundukkan (untukmu) dengan perintah-Nya. Sesungguhnya pada yang demikian itu benar-benar ada tanda-tanda (kekuasaan Allah) bagi kaum yang memahami (nya).

Dari beberapa ayat diatas dapat kita ketahui bahwa Allah SWT telah menciptakan makhluk hidup termasuk mikroorganisme secara sempurna atau secara mendetail tanpa ada hal yang tertinggal atau kurang pada diri makhluk hidup tersebut termasuk mikroorganisme. Sehingga kita sebagai makhluk hidup harus bersukur dengan pemberian Allah SWT, termasuk penciptaan mikroorganisme yang banyak member manfaat kepada manusia.

Kesimpulan

Berdasarkan hasil penulisan “Genetika Mikroorganisme, Sebuah Elemen Dasar Penyusun Kehidupan Mikroorganisme“, dapat diambil kesimpulan bahwa:

v     Gen bakteri biasanya terdapat dalam molekul DNA (asam deoksirinukleat) tunggal, meskipun dikenal pula adanya materi genetik di luar kromosom (ekstra kromosomal), yang di sebut plasmid, yang tersebar luas dalam populasi bakteri.

v     Virus mampu bertahan hidup, tetapi tidak tumbuh, bila tidak di dalam sel inang. Replikasi genom virus tegantung pada energi metabolik dan mesin sintesis makromolekul pada inang.

v     Kebanyakan gen jamur di bawa pada kromosom bakteri. Data susunan genom menunjukan bahwa kebanyakan genom jamur terdiri dari satu molekul DNA sirkuler yang mengandung DNA 580 kbp sampai lebih dari 4600 kbp.

v     Secara umum gen dari bakteri, virus, dan jamur tersusun atas DNA dan RNA

Saran

Berdasarkan penulisan “Genetika Mikroorganisme, Sebuah Elemen Dasar Penyusun Kehidupan Mikroorganisme“, maka dapat disarankan bahwa untuk para ilmuwan atau mahasiswa agar lebih meneliti tentang genetika karena masih banyak hal yang menjadi misteri tentang genetika dari mikroorganisme, sehingga dapat diambil manfaat dari genetika mikroorganisme. Untuk pihak industri penelitian yang mendalam pada genetika mikroorganisme sangat disarankan, salah satu manfaatnya adalah dengan mengetahui genetika dari mikroorganisme tersebut maka pihak industri dapat menghasilkan mikroorganisme yang bermanfaat bagi pihak industri dengan didasarkan genetika dari mikroorganisme yang unggul sehingga pihak industri dapat memperoleh untung atau manfaat yang besar.

Daftar Pustaka

Jawetz. 2001. Mikrobiologi Kedokteran. Salemba Medika. Jakarta.

Schlegel, Hans. 1994. Mikrobiologi Umum Edisi Keenam. Gajah Mada University Press. Yogyakarta.

Stanier Roger, Edward Alderberg dan John Ingraham. 1982. Dunia Mikroba 1. Bharata Karya Aksara. Jakarta.

Syurachman, Agus. 1994. Mikrobiologi Kedokteran. Binarupa Aksara. Jakarta

Waluyo, Lud. 2005. Mikrobiologi Umum. Universitas Muhammadiyah Malang Prees. Malang.

NUTRISI MIKROBA, SEBUAH ESENSI DASAR UNTUK KEHIDUPAN MIKROBA


Abstrak

Untuk keperluan hidupnya, semua makhluk hidup memerlukan bahan makanan. Unsur-unsur dasar tersebut adalah : karbon, nitrogen, hidrogen, oksigen, sulfur, fosfor, zat besi dan sejumlah kecil logam lainnya. Bahan makanan ini diperlukan untuk sintesis bahan sel dan untuk mendapatkan energi. Penulisan ini bertujuan untuk mengetahui jenis-jenis nutrisi yang ada pada mikoorganisme dan kegunaanya. Kesimpulan dari penulisan ini adalah jenis-jenis nutrisi berdasarkan elemenya adalah sumber karbon, nitrogen, belerang, phospat, mineral, dan oksigen. Fungsi utama dari nutrisi ini adalah sumber energi, bahan pembangun sel, dan sebagai aseptor atau donor elektron.


Kata Kunci: Mikroba, Nutrisi, Kehidupan

PENDAHULUAN

Latar Belakang

Untuk keperluan hidupnya, semua makhluk hidup memerlukan bahan makanan. Bahan makanan ini diperlukan untuk sintesis bahan sel dan untuk mendapatkan energi. Demikian juga dengan mikroorganisme, untuk kehidupannya membutuhkan bahan-bahan organik dan anorganik dari lingkungannya. Bahan-bahan tersebut disebut dengan nutrient (zat gizi), sedang proses penyerapanya disebut proses nutrisi (Suriawiria, 1985).”

“Mikroba sama dengan makhluk hidup lainnya, memerlukan suplai nutrisi sebagai sumber energi dan pertumbuhan selnya. Unsur-unsur dasar tersebut adalah : karbon, nitrogen, hidrogen, oksigen, sulfur, fosfor, zat besi dan sejumlah kecil logam lainnya. Ketiadaan atau kekurangan sumber-sumber nutrisi ini dapat mempengaruhi pertumbuhan mikroba hingga pada akhirnya dapat menyebabkan kematian. Kondisi tidak bersih dan higienis pada lingkungan adalah kondisi yang menyediakan sumber nutrisi bagi pertumbuhan mikroba sehingga mikroba dapat tumbuh berkembang di lingkungan seperti ini. Oleh karena itu, prinsip daripada menciptakan lingkungan bersih dan higienis adalah untuk mengeliminir dan meminimalisir sumber nutrisi bagi mikroba agar pertumbuhannya terkendali (Anonymous, 2006).”

Menurut Waluyo (2005), peran utama nutrien adalah sebagai sumber energi, bahan pembangun sel, dan sebagai aseptor elektron dalam reaksi bioenergetik (reaksi yang menghasilkan energi). Oleh karenanya bahan makanan yang diperlukan terdiri dari air, sumber energi, sumber karbon, sumber aseptor elektron, sumber mineral, faktor pertumbuhan, dan nitrogen. “Selain itu, secara umum nutrient dalam media pembenihan harus mengandung seluruh elemen yang penting untuk sintesis biologik oranisme baru (Jawetz, 2001).”

Pertumbuhan mikoorganisme tergantung dari tersedianya air. Bahan-bahan yang terlarut dalam air, yang digunakan oleh mikroorganisme untuk membentuk bahan sel dan memperoleh energi, adalaah bahan makanan. Tuntutan berbagai mikroorganisme yang menyangkt susunan larutan makanan dan persyaratan lingkungan tertentu, sangat berbeda-beda. Oleh sebab itu diperkenalkan banyak resep untuk membuat media biak untuk mikroorganisme. Pada dasarnya sesuatu larutan biak sekurang-kurangnya harus memenuhi syarat-syarat berikut. Di dalamnya harus tersedia semua unsur yang ikut serta pada pembentukan bahan sel dalam bentuk berbagai senyawa yang dapat dioloah (Schlegel, 1994).”

Rumusan Masalah

Berdasarkan latar belakang di atas maka dapat diambil rumusan masalah sebagai berikut :

Ø      Apa saja jenis-jenis nutrisi yang diperlukan dalam perkembangan mikroorganisme ?

Ø      Apa saja fungsi nutrisi dalam kehidupan mikroorganisme ?

Tujuan Penulisan

Penulisan ini bertujuan untuk mengetahui berbagai macam jenis nutrisi yang diperlukan oleh mikroorganisme dan apa saja fungsinya dalam membantu kehidupan mikroorganisme.


Manfaat Penulisan

Penulisan ini memberikan beberapa manfaat. Aspek akademis memberikan informasi ilmiah kepada masyarakat tentang jenis-jenis nutrisi yang ada pada mikroorganisme dan apa saja kegunaan dari mikroorganisme tersebut. Aspek ekonomi, dengan mengetahui jenis-jenis nutrisi dan fungsi nutrisi pada mikroorganime, masyarakat atau juga pihak industri dapat mengembangbiakan mikroorganisme untuk dimanfaatkan dalam berbagai hal yang ditujukan untuk meningkatkan taraf hidup masyarakat.

PEMBAHASAN

Jenis Nutrisi

Nutrien dalam media perbenihan harus mengandung seluruh elemen yang penting untuk sintesis biologik organisme baru. Nutrient diklasifikasikan berdasarkan elemen yang mereka suplai.

Sumber Karbon

Tumbuhan-tumbuhan dan beberapa bakteri mampu mengunakan energi fotosintetik untuk mereduksi karbondioksida pada penggunaan air. Organisme ini termasuk kelompok autotrof, makhluk hidup yang tidak membutuhkan nutrient organik untuk pertumbuhannya. Autotrof lain adalah khemolitotrof, organisme yang menggunakan substrat anorganik seperti hidrogen atau thiosulfat sebagai reduktan dan karbondioksida sebagai sumber karbon.

“Heterotrof membutuhkan karbon organik untuk pertumbuhannya, dan karbon organik tersebut harus dalam bentuk yang dapat diasimilasi. Contohnya, naphthalene dapat menyediakan semua karbon dan energi yang dibutuhkan untuk pertumbuhan respirasi heterotropik, tetapi sangat sedikit organisme yang memiliki jalur metabolik yang perlu untuk asimilasi naphthalene. Sebaliknya, glukosa, dapat membantu pertumbuhan fermentatif atau respirasi dari banyak organisme. Adalah penting bahwa substrat pertumbuhan disuplai pada tingkatan yang cocok untuk galur mikroba yang akan ditumbuhkan. Karbondioksida dibutuhkan pada sejumlah reaksi biosintesis. Banyak organisme respiratif menghasilkan lebih dari cukup karbondioksida untuk memenuhi kebutuhannya, tetapi yang lain membutuhkan sumber karbondioksida pada medium pertumbuhannya (Jawetz, 2001).”

Keperluan akan Zat Karbon

Organisme yang berfotosintesis dan bakteri yang memperoleh energi dari oksidasi senyawa organik menggunakan secara khas bentuk karbon yang paling teroksidas, CO2, sebagai satu-satunya sumber utama karbon selular. Perubahan CO2, menjadi unsur pokok sel organik adalah proses reduktif, yang memerlukan pemasukan bersih energi. Karena itu, di dalam golongan faali ini, sebagian besar dari energi yang berasal dari cahaya atau dari oksidasi senyawa anorganik yang tereduksi harus dikeluarkan untuk reduksi CO2 sampai kepada tingkat zat organik.

Semua organisme lain memperoleh karbonnya terutama dari zat gizi organik. Karena kebanyakan substrat organik adalah setingkat dengan oksidasi umum sebagai unsur pokok sel organik, zat-zat itu biasanya tidak usah menjalani reduksi pertama yang berguna sebagai sumber karbon sel. Selain untuk memenuhi keperluan biosintetik akan karbon, maka substrat organik harus memberikan keperluan energetik untuk sel itu. Akibatnya sebagian besar daripada karbon yang terdapat pada substrat organik memasuki lintasan lintasan metabolisme yang menghasilkan energi dan akhirnya dikeluarkan lagi dari sel, sebagai CO2 (hasil utama dalam metabolisme pernapasan yang menghasilkan energi atau sebagai campuran CO2 dan senyawa organik). Jadi, substrat organik biasanya mempunyai peran gizi yang lengkap. Pada waktu yang bersamaan berguna sebagai sumber karbon dan sumber energi. Banyak mikroorganisme dapat menggunakan senyawa senyawa organik tunggal untuk memenuhi keperluan kedua zat gizi tersebut seluruhnya. Akan tetapi, yang lain tidak dapat tumbuh bila hanya diberi satu senyawa organik dan mereka memerlukan bermacam-macam jumlah senyawa tambahan sebagai zat gizi. Tambahan zat gizi organik ini mempunyai fungsi biosintetik semata-mata, yang diperlukan sebagai pelopor unsur-unsur pokok sel organik tertentu yang tidak dapat disintesis oleh organisme tersebut. Zat itu disebut faktor tumbuh.

Mikroorganisme teramat beragam baik dalam hal macam maupun jumlah senyawa organik yang dapat mereka gunakan sebagai sumber utama karbon dan energi. Keanekaragaman ini diperlihatkan secara nyata bahwa tidak ada senyawa organik yang dihasilkan secara alamiah yang tidak dapat digunakan sebagai sumber karbon dan energi oleh beberapa mikroorganisme. Karena itu, tidaklah mungkin untuk memberikan secara singkat sifat-sifat kimiawi sumber karbon organik untuk mikroorganisme. Variasi yang luar biasa mengenai keperluan akan karbon adalah salah satu segi fisiologis yang paling menarik dalam mikrobiologi.

Bila keperluan karbon organik mikroorganisme tersendiri dipelajari, beberapa memperlihatkan tingkatan serbaguna yang tinggi, sedangkan yang lain teramat khusus. Bakteri tertentu dari golongan Pseudomonas misalnya, dapat menggunakan setiap salah satu diantara lebih dari 90 macam senyawa organik sebagai satu-satunya sumber karbon dan energi. Pada ujung lain dalam spektrum terdapat bakteri yang mengoksidasi metan, yang hanya dapat menggunakan dua substrat organik, metan dan methanol, dan bakteri pengurai selulose tertentu hanya dapat menggunakan selulose.

Kebanyakan (dan barangkali semua) organisme yang bergantung pada sumber-sumber karbon organik memerlukan CO2 pula sebagai zat gizi dalam jumlah yang sangat kecil, karena senyawa ini digunakan dalam beberapa reaksi biosentitik. Akan tetapi, karena CO2 biasanya dihasilkan dalam jumlah banyak oleh organisme yang menggunakan senyawa organik, persyaratan biosintetik dapat terpenuhi melalui metabolisme sumber karbon organik dan energi. Sekalipun demikian, peniadaan CO2 sama sekali sering kali menangguhkan atau menghambat pertumbuhan mikroorganisme pada media organik, dan beberapa bakteri dan cendawan memerlukan konsentrasi CO2 yang relatif tinggi di dalam atmosfer (5-10 %) untuk pertumbuhan yang memadai dalam media organik.

Sumber Nitrogen dan Belerang

Nitrogen merupakan komponen utama protein dan asam nukleat, yaitu sebesar lebih kurang 10 persen dari berat kering sel bakteri. Nitrogen mungkin disuplai dalam bentuk yang berbeda, dan mikroorganisme beragam kemampuannya untuk mengasimilasi nitrogen. Hasil akhir dari seluruh jenis asimilasi nitrogen adalah bentuk paling tereduksi yaitu ion ammonium (NH4+).

Banyak mikroorganisme memiliki kemampuan untuk mengasimilasi nitrat (NO3) dan nitrit (NO2) secara reduksi dengan mengubahnya menjadi amoniak (NH3). Jalur asimilasi ini berbeda dengan jalur dissimilasi nitrat dan nitrit. Jalur dissimilasi digunakan oleh organisme yang menggunakan ion ini sebagai elektron penerima terminal dalam respirasi, proses ini dikenal sebagai denitrifikasi, dan hasilnya adalah gas nitrogen (N2), yang dikeluarkan ke atmosfer.

Kemampuan untuk mengasimilasi N2 secara reduksi melalui NH3, yang disebut fiksasi nitrogen, adalah sifat untuk prokariota, dan relatif sedikit bakteri yang memiliki kemampuan metabolisme ini. Proses tersebut membutuhkan sejumlah besar energi metabolik dan tidak dapat aktif dengan adanya oksigen. Kemampuan fiksasi nitrogen ditemukan pada beragam bakteri yang berevolusi sangat berbeda dalam strategi biokimia untuk melindungi enzim fixing-nitrogen nya dari oksigen.

Kebanyakan mikroorganisme dapat menggunakan NH4+ sebagai sumber nitrogen utama, dan banyak organisme memiliki kemampuan untuk menghasilkan NH4+ dari amina (R-NH2) atau dari asam amino (RCHNH2COOH). Produksi amoniak dari deaminasi asam amino disebut ammonifikasi. Amoniak dimasukkan ke dalam bahan organik melalui jalur biokomia yang melibatkan glutamat dan glutamine.

Seperti nitrogen, belerang adalah komponen dari banyak substansi organik sel. Belerang membentuk bagian struktur beberapa koenzim dan ditemukan dalam rantai samping cisteinil dan merionil protein. Belerang dalam bentuk asalnya tidak dapat digunakan oleh tumbuhan atau hewan. Namun, beberapa bakteri autotropik dapat mengoksidasinya menjadi sulfat (SO42-). Kebanyakan mikroorganisme dapat menggunakan sulfat sebagai sumber belerang, mereduksi sulfat menjadi hidrogen sulfida (H2S). Beberapa mikroorganisme dapat mengasimilasi H2S secara langsung dari medium pertumbuhan tetapi senyawa ini dapat menjadi racun bagi banyak organisme.

Kedua unsur ini yaitu belerang dan nitrogen terdapat dalam sel dalam bentuk tereduksi, sebagai gugus sulfhidril dan amino. Sebagian besar mikroorganisme mampu menampung unsur-unsur ini dalam bentuk oksida dan mereduksi sulfat dan juga nitrat. Sumber nitrogen yang paling lazim untuk mikroorganisme adalah garam-garam ammonium. Beberapa prokariot mampu mereduksi nitrogen molekul (N2 atau dinitrogen). Mikroorganisme lain memerlukan asam-asam amino sebagai sumber nitrogen, jadi yang mengandung nitrogen organik. Tidak semua mikroorganisme mampu mereduksi sulfat, beberapa diantaranya memerukan H2S atau sistein sebagai sumber S.

Keperluan Akan Nitrogen dan Belerang

Nitrogen dan belerang terdapat pada senyawa organik sel terutama dalam bentuk yang terinduksi masing-masing sebagai gugus amino dan sulfhidril. Kebanyakan organisme fotosintetik mengasimilasi kedua unsur ini dalam keadaan anorganik yang teoksidasi, sebagai nitrat dan sulfat, jadi penggunaan biosintetiknya meliputi reduksi pendahuluan. Banyak bakteri nonfotosintetik dan cendawan dapat juga memenuhi keperluannya akan nitrogen dan belerang dari nitrat dan sulfat. Beberapa mikroorganisme tidak dapat mengadakan reduksi salah satu atau kedua anion ini dan harus diberikan unsur dalam bentuk tereduksi. Keperluan akan sumber nitrogen yang tereduksi agak umum dan dapat dipenuhi oleh persediaan nitrogen sebagai garam-garam ammonium. Keperluan akan belerang tereduksi lebih jarang, bahan itu dipenuhi dari persediaan sulfida atau dari senyawa organik yang mengandung satu gugus sulfhidril (misalnya sisteine).

Persyaratan akan nitrogen dan belerang sering kali juga dapat diperoleh dari zat gizi organik yang mengandung kedua unsur ini dalam kombinasi organik yang tereduksi (asam amino atau hasil penguraian protein yang lebih kompleks, seperti pepton). Tentu saja, senyawa-senyawa seperti itu dapat menyediakan sumber karbon organik dan energi, sekaligus memenuhi keperluan selular akan karbon, nitrogen, belerang, dan energi.

Beberapa bakteri dapat juga memanfaatkan sumber nitrogen alam yang paling banyak, yaitu N2. Proses asimilasi nitrogen ini disebut fiksasi nitrogen dan meliputi reduksi permulaan N2 menjadi amino.

Sumber Phospor

Fosfat (PO43-) dibutuhkan sebagai komponen ATP, asam nukleat dan sejumlah koenzim seperti NAD, NADP dan flavin. Selain itu, banyak metabolit, lipid (fosfolipid, lipid A), komponen dinding sel (teichoic acid), beberapa polisakarida kapsul dan beberapa protein adalah bergugus fosfat. Fosfat selalu diasimilasi sebagai fosfat anorganik bebas (Pi).

Sumber Mineral

Sejumlah besar mineral dibutuhkan untuk fungsi enzim. Ion magnesium (Mg2+) dan ion ferrum (Fe2+) juga ditemukan pada turunan porfirin yaitu: magnesium dalam molekul klorofil, dan besi sebagai bagian dari koenzim sitokrom dan peroksidase. Mg2+ dan K+ keduanya sangat penting untuk fungsi dan kesatuan ribosom. Ca2+ dibutuhkansebagai komponen dinding sel gram positif, meskipun ion tersebut bebas untuk bakteri gram negatif. Banyak dari organisme laut membutuhkan Na+ untuk pertumbuhannya. Dalam memformulasikan medium untuk pembiakan kebanyakan mikroorganisme, sangatlah penting untuk menyediakan sumber potassium, magnesium, kalsium, dan besi, biasanya dalam bentuk ion-ion (K+, Mg2+, Ca2+, dan Fe2+). Banyak mineral lainnya (seperti Mn2+, Mo2+, Co2+, Cu2+, dan Zn2+) dibutuhkan: mineral ini kerapkali terdapat dalam air kran atau sebagai kontaminan dari kandungan medium lainnya.

Pengambilan besi dalam bentuk hidroksida yang tak larut pada pH netral, difasilitasi pada banyak bakteri dan fungi dengan produksi senyawa siderofor yang mengikat besi dan mendukung trasnportasinya sebagai kompleks terlarut. Semua ini meliputi hydroxymates (-CONH2OH) yang disebut sideramines, dan turunan catechol (seperti 2,3-dihydroxybenzolyserine). Siderofor yang dibentuk plasmid memainkan peranan utama dalam sifat invasi beberapa bakteri patogen.


Sumber Oksigen

Untuk sel oksigen tersedia dalam bentuk air. Selanjutnya oksigen juga terdapat dalam CO2 dan dalam bentuk senyawa organik. Selain itu masih banya organisme yang tergantung dari oksigen molekul (O2 atau dioksigen). Oksigen yang berasal dari molekul oksigen hanya akan diinkorporasi ke dalam substansi sel kalau sebagai sumber karbon digunakan metana atau hidrokarbon aromatic yang berantai panjang. Menilik hubungannya dengan oksigen dapat dibedakan sekurang-kurangnya tiga kelompok organisme: organisme aerob obligat yang mampu menghasilkan energi hanya melalui respirasi dan dengan demikian tergantung pada oksigen. Organisme anaerob obligat hanya dapat hidup dalam lingkungan bekas oksigen. Untuk organisme ini O2 bersifat toksik. Mikroorganisme anaerob fakultatif tumbuh dengan adanya O2 udara, jadi bersifat aerotoleran; tetapi organisme ini tidak dapat memanfaatkan O2, tetapi memperoleh energi semata-mata dari peragian. Jenis bakteri anaerob fakultatif lain (Enterobacteriaceae) dan banyak ragi dapat beralih dari peroleh energi dengan respirasi (dengan adanya O2) ke peragian (tanpa O2).

Tabel Kebutuhan Oksigen Pada Mikoorganisme


Banyak, kalau tidak sebagian besar, jenis bakteri aerob, bersifat mikroaerofil, artinya mereka memang memerlukan O2 untuk mendapatkan energi, tetapi tidak tahan terhadap tekana parsial udara (0,20 bar), tetapi hanya tahan terhadap tekanan parsial 0,01 sampai 0,03 bar.

Tipe – Tipe Nutrisi Utama Bakteri

TIPE SUMBER ENERGI UNTUK
PERTUMBUHAN
SUMBER KARBON
UNTUK
PERTUMBUHAN
CONTOH GENUS
Fototrof Fotoautotrof
Fotoheterotrof
Cahaya Cahaya CO2 Senyawa organik Chromatium Rhodopseumdomonas
Kemotrof Kemoautotrof
Kemoheterotrof
Oksidasi senyawa organik
Oksidasi senyawa
organik
CO2 Senyawa organik Thiobacillus Esherichia



Contoh Nutrisi Mikronutrein




Contoh Produk Nutrisi Untuk Mikroorganisme

\TUGAS\mikro\genetika mikroba\sizeon500.gif\TUGAS\mikro\genetika mikroba\micro-whey-2.jpg \TUGAS\mikro\genetika mikroba\micro-wafers-.jpg

\TUGAS\mikro\genetika mikroba\3EA84A7AA4AF423E9D979220CC121648.0.pngContoh Grafik Nutrisi dan Pengaruhnya Terhadap Jenis Bakteri

\TUGAS\Mikrobiologi\genetika mikroba\bacteria_bifidobacteria_growth.gif
Fungsi Nutrisi Untuk Mikroba

Setiap unsur nutrisi mempunyai peran tersendiri dalam fisiologi sel. Unsur tersebut diberikan ke dalam medium sebagai kation garam anorganik yang jumlahnya berbeda-beda tergantung pada keperluannya. Beberapa golongan mikroba misalnya diatomae dan alga tertentu memerlukan silika (Si) yang biasanya diberikan dalam bentuk silikat untuk menyusun dinding sel. Fungsi dan kebutuhan natrium (Na) untuk beberapa jasad belum diketahui jumlahnya. Natrium dalam kadar yang agak tinggi diperlukan oleh bakteri tertentu yang hidup di laut, algae hijau biru, dan bakteri fotosintetik. Natrium tersebut tidak dapat digantikan oleh kation monovalen yang lain. Jasad hidup dapat menggunakan makanannya dalam bentuk padat maupun cair (larutan). Jasad yang dapat menggunakan makanan dalam bentuk padat tergolong tipe holozoik, sedangkan yang menggunakan makanan dalam bentuk cair tergolong tipe holofitik. Jasad holofitik dapat pula menggunakan makanan dalam bentuk padat, tetapi makanan tersebut harus dicernakan lebih dulu di luar sel dengan pertolongan enzim ekstraseluler. Pencernaan di luar sel ini dikenal sebagai extracorporeal digestion. Bahan makanan yang digunakan oleh jasad hidup dapat berfungsi sebagai sumber energi, bahan pembangun sel, dan sebagai aseptor atau donor elektron. Dalam garis besarnya bahan makanan dibagi menjadi tujuh golongan yaitu air, sumber energi, sumber karbon, sumber aseptor elektron, sumber mineral, faktor tumbuh, dan sumber nitrogen.

1. Air

Air merupakan komponen utama sel mikroba dan medium. Funsi air adalah sebagai sumber oksigen untuk bahan organik sel pada respirasi. Selain itu air berfungsi sebagai pelarut dan alat pengangkut dalam metabolisme.

2. Sumber energi

Ada beberapa sumber energi untuk mikroba yaitu senyawa organik atau anorganik yang dapat dioksidasi dan cahaya terutama cahaya matahari.

3. Sumber karbon

Sumber karbon untuk mikroba dapat berbentuk senyawa organik maupun anorganik. Senyawa organik meliputi karbohidrat, lemak, protein, asam amino, asam organik, garam asam organik, polialkohol, dan sebagainya. Senyawa anorganik misalnya karbonat dan gas CO2 yang merupakan sumber karbon utama terutama untuk tumbuhan tingkat tinggi.

4. Sumber aseptor elektron

Proses oksidasi biologi merupakan proses pengambilan dan pemindahan elektron dari substrat. Karena elektron dalam sel tidak berada dalam bentuk bebas, maka harus ada suatu zat yang dapat menangkap elektron tersebut. Penangkap elektron ini disebut aseptor elektron. Aseptor elektron ialah agensia pengoksidasi. Pada mikrobia yang dapat berfungsi sebagai aseptor elektron ialah O2, senyawa organik, NO3-, NO2-, N2O, SO4 =, CO2, dan Fe3+.

5. Sumber mineral

Mineral merupakan bagian dari sel. Unsur penyusun utama sel ialah C, O, N, H, dan P. unsur mineral lainnya yang diperlukan sel ialah K, Ca, Mg, Na, S, Cl. Unsur mineral yang digunakan dalam jumlah sangat sedikit ialah Fe, Mn, Co, Cu, Bo, Zn, Mo, Al, Ni, Va, Sc, Si, Tu, dan sebagainya yang tidak diperlukan jasad. Unsur yang digunakan dalam jumlah besar disebut unsur makro, dalam jumlah sedang unsur oligo, dan dalam jumlah sangat sedikit unsur mikro. Unsur mikro sering terdapat sebagai ikutan (impurities) pada garam unsur makro, dan dapat masuk ke dalam medium lewat kontaminasi gelas tempatnya atau lewat partikel debu. Selain berfungsi sebagai penyusun sel, unsur mineral juga berfungsi untuk mengatur tekanan osmose, kadar ion H+ (kemasaman, pH), dan potensial oksidasireduksi (redox potential) medium.

6. Faktor tumbuh

Faktor tumbuh ialah senyawa organik yang sangat diperlukan untuk pertumbuhan (sebagai prekursor, atau penyusun bahan sel) dan senyawa ini tidak dapat disintesis dari sumber karbon yang sederhana. Faktor tumbuh sering juga disebut zat tumbuh dan hanya diperlukan dalam jumlah sangat sedikit. Berdasarkan struktur dan fungsinya dalam metabolisme, faktor tumbuh digolongkan menjadi asam amino, sebagai penyusun protein; base purin dan pirimidin, sebagai penyusun asam nukleat; dan vitamin sebagai gugus prostetis atau bagian aktif dari enzim.

7. Sumber nitrogen

Mikroba dapat menggunakan nitrogen dalam bentuk amonium, nitrat, asam amino, protein, dan sebagainya. Jenis senyawa nitrogen yang digunakan tergantung pada jenis jasadnya. Beberapa mikroba dapat menggunakan nitrogen dalam bentuk gas N2 (zat lemas) udara. Mikroba ini disebut mikrobia penambat nitrogen.


Unsur utama, sumber dan fungsi mereka dalam sel bakteri.

Elemen
% dari berat kering
Sumber
Fungsi
Karbon 50 Kompleks organik atau CO 2 material Utama dari bahan selular
Oksigen 20 H 2 O, Kompleks organik, CO 2, dan O 2 Konstituen dari sel dan sel bahan air; O 2 adalah menerima elektron dalam respirasi aerobik
Nitrogen +14 NH 3, NO 3, Kompleks organik, N 2 Konstituen dari asam amino, asam nukleik nucleotides, dan coenzymes
Hidrogen 8 H 2 O, Kompleks organik, H 2 Utama dari organik memanjang dan sel air
Fosfor 3 anorganik Fosfat (PO 4) Konstituen dari asam nukleik, nucleotides, phospholipids, LPS, teichoic asam
Belerang 1 SO 4, H 2 S, S o, belerang organik memanjang Konstituen dari cysteine, methionine, glutathione, beberapa coenzymes
Kalium 1 Kalium GARAM dapur Utama selular anorganik gigih dan cofactor untuk enzim tertentu
Magnesium 0.5 0,5 Magnesium GARAM dapur Anorganik selular dengan gigih, cofactor tertentu untuk reaksi enzimatis
Kalsium 0.5 0,5 Kalsium GARAM dapur Anorganik selular dengan gigih, cofactor untuk enzim tertentu dan komponen endospores
Besi 0.2 0,2 GARAM dapur besi Komponen tertentu cytochromes dan nonheme-besi dan protein yang cofactor untuk beberapa reaksi enzimatis

Penggolongan Mikroba Berdasarkan Nutrisi Dan Oksigen

1. Berdasarkan sumber karbon

Berdasarkan atas kebutuhan karbon jasad dibedakan menjadi jasad ototrof dan heterotrof. Jasad ototrof ialah jasad yang memerlukan sumber karbon dalam bentuk anorganik, misalnya CO2 dan senyawa karbonat. Jasad heterotrof ialah jasad yang memerlukan sumber karbon dalam bentuk senyawa organik. Jasad heterotrof dibedakan lagi menjadi jasad saprofit dan parasit. Jasad saprofit ialah jasad yang dapat menggunakan bahan organik yang berasal dari sisa jasad hidup atau sisa jasad yang telah mati. Jasad parasit ialah jasad yang hidup di dalam jasad hidup lain dan menggunakan bahan dari jasad inang (hospes)-nya. Jasad parasit yang dapat menyebabkan penyakit pada inangnya disebut jasad patogen.

2. Berdasarkan sumber energi

Berdasarkan atas sumber energi jasad dibedakan menjadi jasad fototrof, jika menggunakan energi cahaya; dan khemotrof, jika menggunakan energi dari reaksi kimia. Jika didasarkan atas sumber energi dan karbonnya, maka dikenal jasad fotoototrof, fotoheterotrof, khemoototrof dan khemoheterotrof. Perbedaan dari keempat jasad tersebut sbb:

Jasad Sumber Karbon Sumber Energi
Fotoototrof Fotoheterotrof
Khemotrof
khemoheterotrof
Zat anorganik Zat organik
Zat anorganik
Zat organik
Cahaya matahari Cahaya matahari
Oksidasi zat anorganik
Oksidasi zat organik


3. Berdasarkan sumber donor elektron

Berdasarkan atas sumber donor elektron jasad digolongkan manjadi jasad litotrof dan organotrof. Jasad litotrof ialah jasad yang dapat menggunakan donor elektron dalam bentuk senyawa anorganik seperti H2, NH3, H2S, dan S. jasad organotrof ialah jasad yang menggunakan donor elektron dalam bentuk senyawa organik.

4. Berdasarkan sumber energi dan donor elektron

Berdasarkan atas sumber energi dan sumber donor elektron jasad dapat digolongkan menjadi jasad fotolitotrof, fotoorganotrof, khemolitotrof, dan khemoorganotrof. Perbedaan keempat golongan jasad tersebut sbb:

Jasad Sumber Energi Sumber Donor Elektron Contoh
Fotolitotrof Fotoorganotrof
Khemolitotrof
Khemoorganotrof
Cahaya Cahaya
Oksidasi zat
anorganik
Oksidasi zat organik
Zat anorganik Zat organik
Zat anorganik
Zat organik
Tumbuhan tingkat tinggi, alga Bakteri belerang fotosintetik
Bakteri besi, bakteri
hidrogen, bakteri nitrifikasi
Jasad heterotrof


5. Berdasarkan kebutuhan oksigen

Berdasarkan akan kebutuhan oksigen, jasad dapat digolongkan dalam jasad aerob, anaerob, mikroaerob, anaerob fakultatif, dan kapnofil. Pertumbuhan mikroba di dalam media cair dapat menunjukkan sifat berdasarkan kebutuhan oksigen.

Obligat aerob Fakultatif anaerob Obligat anaerob Aerotoleran/Anaerob Mikroaerofil Jasad aerob ialah jasad yang menggunakan oksigen bebas (O2) sebagai satusatunya aseptor hidrogen yang terakhir dalam proses respirasinya. Jasa anaerob, sering disebut anaerob obligat atau anaerob 100% ialah jasad yang tidak dapat menggunakan oksigen bebas sebagai aseptor hidrogen terakhir dalam proses respirasinya. Jasad mikroaerob ialah jasad yang hanya memerlukan oksigen dalam jumlah yang sangat sedikit. Jasad aerob fakultatif ialah jasad yang dapat hidup dalam keadaan anaerob maupun aerob. Jasad ini juga bersifat anaerob toleran. Jasad kapnofil ialah jasad yang memerlukan kadar oksigen rendah dan kadar CO2 tinggi.

Interaksi Antar Jasad Dalam Menggunakan Nutrien

Jika dua atau lebih jasad yang berbeda ditumbuhkan bersama-sama dalam suatu medium, maka aktivitas metabolismenya secara kualitatif maupun kuantitatif akan berbeda jika dibandingkan dengan jumlah aktivitas masing-masing jasad yang ditumbuhkan dalam medium yang sama tetapi terpisah. Fenomena ini merupakan hasil interaksi metabolisme atau interaksi dalam penggunaan nutrisi yang dikenal sebagai sintropik atau sintropisme atau sinergitik. Sebagai contoh ialah bakteri penghasil metan yang anaerob obligat tidak dapat menggunakan glukosa sebagai substrat, tetapi bakteri tersebut akan segera tumbuh oleh adanya hasil metabolisme bakteri anaerob lain yang dapat menggunakan glukosa. Contoh lain ialah biakan campuran yang terdiri atas dua jenis mikroba atau lebih sering tidak memerlukan faktor tumbuh untuk pertumbuhannya. Mikroba yang dapat mensintesis bahan selnya dari senyawa organik sederhana dalam medium, akan mengekskresikan berbagai vitamin atau asam amino yang sangat penting untuk mikroba lainnya. Adanya ekskresi tersebut memungkinkan tumbuhnya mikroba lain. Kenyataan ini dapat menimbulkan koloni satelit yang dapat dilihat pada medium padat. Koloni satelit hanya dapat tumbuh kalau ada ekskresi dari mikroba lain yang menghasilkan faktor tumbuh esensiil bagi mikroba tersebut. Bentuk interaksi lain adalah cross feeding yang merupakan bentuk sederhana dari simbiose mutualistik. Dalam interaksi ini pertumbuhan jasad yang satu tergantung pada pertumbuhan jasad lainnya, karena kedua jasad tersebut saling memerlukanm faktor tumbuh esensiil yang diekskresikan oleh masing-masing jasad.


Kajian Religi

Di dalam Al-Quran secara tersirat Allah SWT telah menyiratkan akan pentingnya nutrisi atau proses penyerapan bahan makanan bagi makhluk hidup yang ia ciptakan termasuk mikroorganisme yang juga merupakan salah satu contoh makhluk hidup ciptaan Allah SWT, hal ini tersirat dalam beberapa ayat di dalam Al-Quran diantaranya dalam :

QS. AL, MAIDAH AYAT 88. Dan makanlah makanan yang halal lagi baik dari apa yang Allah telah rezekikan kepadamu, dan bertakwalah kepada Allah yang kamu beriman kepada-Nya.

QS. AN NAHL 114. Maka makanlah yang halal lagi baik dari rezki yang telah diberikan Allah kepadamu; dan syukurilah nikmat Allah, jika kamu hanya kepada-Nya saja menyembah.

QS AL HIJR AYAT 20. Dan Kami telah menjadikan untukmu di bumi keperluan-keperluan hidup, dan (Kami menciptakan pula) makhluk – makhluk yang kamu sekali-kali bukan pemberi rezki kepadanya.

Q.S AL ANKABUT AYAT 60. Dan berapa banyak binatang yang tidak (dapat) membawa (mengurus) rezkinya sendiri. Allah-lah yang memberi rezki kepadanya dan kepadamu dan Dia Maha Mendengar lagi Maha Mengetahui.

Dari beberapa ayat diatas dapat kita ketahui bahwa Allah SWT sangat menganjurkan makan makanan yang bergizi dimana dengan makanan atau nutrient yang bergizi, akan terjadi proses nutrisi yang juga bagus kepada semua mahluknya termasuk kepada mikoorganisme, namun semua mahluknya tidak boleh khwatir akan kekurangan bahan makanan karena Allah SWT yang akan menjamin makanan atau rezeki yang diberikan kepada mereka termasuk juga akan menjamin sember daya makanan kepada mikroorganisme, makhluk terkecil yang Allah SWT ciptakan.



KESIMPULAN

Berdasarkan hasil penulisan Nutrisi Mikroba, Sebuah Esensi Dasar Untuk Kehidupan Mikroba”, dapat diambil kesimpulan bahwa:

v     Nutrient diklasifikasikan berdasarkan elemen yang mereka suplai yaitu:

-          Sumber Karbon

-          Sumber Nitrogen dan Belerang

-          Sumber Phospor

-          Sumber Mineral

-          Sumber Oksigen

v     Fungsi utama nutrisi bagi organisme diantaranya adalah: sumber energi, bahan pembangun sel, dan sebagai aseptor atau donor elektron.

SARAN

Berdasarkan penulisan “Nutrisi Mikroba, Sebuah Esensi Dasar Untuk Kehidupan Mikroba”, maka dapat disarankan bahwa masyarakat ataupun pihak industri yang ingin memanfaatkan jasa dari mikroorganisme harus selalu memperhatikan nutrisi dari mikroorganisme terutama jenis – jenis nutrisi yang dibutuhkan dan fungsi apa saja dari nutrisi yang dibutuhkan oleh mikroorganisme tersebut. Hal ini sangat diperlukan agar masyarakat ataupun pihak industri dapat memanfaatkan semaksimal mungkin jasa dari mikroorganisme tersebut untuk meningkatkan pendapatan atau juga untuk kepentingan lainnya yang bermanfaat dalam kehidupannya, tanpa menganggu kehidupan dari mikroorganisme tersebut.

DAFTAR PUSTAKA

Anonymous. 2006. Faktor yang Mempengaruhi Pertumbuhan Mikroba. (Online). (http://rachdie.blogsome.com/2006/10/14/faktor-yang-mempengaruhi-pertumbuhan-mikroba/) Diakses Tanggal 15 Desember 2008.

Jawetz. 2001. Mikrobiologi Kedokteran. Salemba Medika. Jakarta.

Schlegel, Hans. 1994. Mikrobiologi Umum Edisi Keenam. Gajah Mada University Press. Yogyakarta.

Stanier Roger, Edward Alderberg dan John Ingraham. 1982. Dunia Mikroba 1. Bharata Karya Aksara. Jakarta.

Waluyo, Lud. 2005. Mikrobiologi Umum. Universitas Muhammadiyah Malang Prees. Malang.






Tidak ada komentar:

Posting Komentar